Definition funcomp {X Y Z} (g : Y -> Z) (f : X -> Y) :=
fun x => g (f x).
Lemma funcomp_assoc {W X Y Z} (g: Y -> Z) (f: X -> Y) (h: W -> X) :
funcomp g (funcomp f h) = (funcomp (funcomp g f) h).
Proof.
reflexivity.
Qed.
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
Require Import List.
Notation "'list_map'" := map.
Definition list_ext {A B} {f g : A -> B} :
(forall x, f x = g x) -> forall xs, list_map f xs = list_map g xs.
intros H. induction xs. reflexivity.
cbn. f_equal. apply H. apply IHxs.
Defined.
Definition list_id {A} { f : A -> A} :
(forall x, f x = x) -> forall xs, list_map f xs = xs.
Proof.
intros H. induction xs. reflexivity.
cbn. rewrite H. rewrite IHxs; eauto.
Defined.
Definition list_comp {A B C} {f: A -> B} {g: B -> C} {h} :
(forall x, (funcomp g f) x = h x) -> forall xs, map g (map f xs) = map h xs.
Proof.
induction xs. reflexivity.
cbn. rewrite <- H. f_equal. apply IHxs.
Defined.
Definition prod_map {A B C D} (f : A -> C) (g : B -> D) (p : A * B) :
C * D.
Proof.
destruct p as [a b]. split.
exact (f a). exact (g b).
Defined.
Definition prod_id {A B} {f : A -> A} {g : B -> B} :
(forall x, f x = x) -> (forall x, g x = x) -> forall p, prod_map f g p = p.
Proof.
intros H0 H1. destruct p. cbn. f_equal; [ apply H0 | apply H1 ].
Defined.
Definition prod_ext {A B C D} {f f' : A -> C} {g g': B -> D} :
(forall x, f x = f' x) -> (forall x, g x = g' x) -> forall p, prod_map f g p = prod_map f' g' p.
Proof.
intros H0 H1. destruct p as [a b]. cbn. f_equal; [ apply H0 | apply H1 ].
Defined.
Definition prod_comp {A B C D E F} {f1 : A -> C} {g1 : C -> E} {h1 : A -> E} {f2: B -> D} {g2: D -> F} {h2 : B -> F}:
(forall x, (funcomp g1 f1) x = h1 x) -> (forall x, (funcomp g2 f2) x = h2 x) -> forall p, prod_map g1 g2 (prod_map f1 f2 p) = prod_map h1 h2 p.
Proof.
intros H0 H1. destruct p as [a b]. cbn. f_equal; [ apply H0 | apply H1 ].
Defined.
Definition option_map {A B} (f : A -> B) (p : option A) :
option B :=
match p with
| Some a => Some (f a)
| None => None
end.
Definition option_id {A} {f : A -> A} :
(forall x, f x = x) -> forall p, option_map f p = p.
Proof.
intros H. destruct p ; cbn.
- f_equal. apply H.
- reflexivity.
Defined.
Definition option_ext {A B} {f f' : A -> B} :
(forall x, f x = f' x) -> forall p, option_map f p = option_map f' p.
Proof.
intros H. destruct p as [a|] ; cbn.
- f_equal. apply H.
- reflexivity.
Defined.
Definition option_comp {A B C} {f : A -> B} {g : B -> C} {h : A -> C}:
(forall x, (funcomp g f) x = h x) ->
forall p, option_map g (option_map f p) = option_map h p.
Proof.
intros H. destruct p as [a|]; cbn.
- f_equal. apply H.
- reflexivity.
Defined.
Hint Rewrite in_map_iff : FunctorInstances.
Declare Scope fscope.
Declare Scope subst_scope.
Ltac eta_reduce :=
repeat match goal with
| [|- context[fun x => ?f x]] => change (fun x => f x) with f
end.
Ltac minimize :=
repeat match goal with
| [|- context[fun x => ?f x]] => change (fun x => f x) with f
| [|- context[fun x => ?g (?f x)]] => change (fun x => g (f x)) with (funcomp g f)
end.
Ltac setoid_rewrite_left t := setoid_rewrite <- t.
Ltac check_no_evars :=
match goal with
| [|- ?x] => assert_fails (has_evar x)
end.
Require Import Setoid Morphisms.
Lemma pointwise_forall {X Y:Type} (f g: X -> Y) :
(pointwise_relation _ eq f g) -> forall x, f x = g x.
Proof.
trivial.
Qed.
Instance funcomp_morphism {X Y Z} :
Proper (@pointwise_relation Y Z eq ==> @pointwise_relation X Y eq ==> @pointwise_relation X Z eq) funcomp.
Proof.
cbv - [funcomp].
intros g0 g1 Hg f0 f1 Hf x.
unfold funcomp. rewrite Hf, Hg.
reflexivity.
Qed.
Instance funcomp_morphism2 {X Y Z} :
Proper (@pointwise_relation Y Z eq ==> @pointwise_relation X Y eq ==> eq ==> eq) funcomp.
Proof.
intros g0 g1 Hg f0 f1 Hf ? x ->.
unfold funcomp. rewrite Hf, Hg.
reflexivity.
Qed.
Ltac unfold_funcomp := match goal with
| |- context[(funcomp ?f ?g) ?s] => change ((funcomp f g) s) with (f (g s))
end.