HOcore.InclIoRemBisIoMultiBis
Require Import HOcore.Prelim.
Require Import HOcore.ComplLat
HOcore.HoCore
HOcore.Multiset
HOcore.Bis
HOcore.IoMultiBis.
Require Import HOcore.ComplLat
HOcore.HoCore
HOcore.Multiset
HOcore.Bis
HOcore.IoMultiBis.
This file contains the proof that IO bisimilarity defined via variable removal bisimulations is contained in IO bisimilarity defined via variable multiset bisimulations
Connections between var. rem. transitions and occurrences of unguarded variables
Lemma unguarded_var_then_nil_step
(n: nat)
(p: process):
1 <= mult (count p) n ->
exists p',
step_var_rem n p p'.
Proof.
intros H1. induction p; try (cbv in H1; omega).
- destruct (nat_dec n v).
+ ainv. exists Nil. constructor.
+ cbn in H1. destruct (nat_dec v n); try contradiction; omega.
- simpl in H1.
rewrite union_mult in H1.
remember (mult (count p1) n) as z.
destruct z.
+ simpl in H1.
specialize (IHp2 H1). destruct IHp2 as [p' H3].
eexists. eapply StVarRemParR; eauto.
+ assert (1 <= S z) by omega.
specialize (IHp1 H). destruct IHp1 as [p' H3].
exists (Par p' p2).
eapply StVarRemParL; eauto.
Qed.
Lemma nil_step_then_unguarded_var
(n: nat)
(p p': process):
step_var_rem n p p' ->
1 <= mult (count p) n.
Proof.
induction 1.
- simpl. destruct (nat_dec n n); try omega; intuition.
- simpl. rewrite union_mult. omega.
- simpl. rewrite union_mult. omega.
Qed.
Lemma step_var_rem_decreases_var_occurrence
(p p': process)
(v: var):
step_var_rem v p p' ->
S (mult (count p') v) =
mult (count p) v.
Proof.
induction 1; subst.
- simpl. destruct (nat_dec n n); try omega.
- simpl. do 2 rewrite union_mult. omega.
- simpl. do 2 rewrite union_mult. omega.
Qed.
Lemma nu_of_s_io_rem_sym_is_closed_under_s_var_multi:
postfp s_var_multi (nu s_io_rem_sym).
Proof.
intros p q H1.
unfold s_var_multi. intros v.
remember (mult (count p) v + mult (count q) v) as n.
revert n p q Heqn H1.
pose (H1 := @size_recursion).
specialize (H1 nat id (fun n => forall (p q : process),
n = (mult (count p) v + mult (count q) v) ->
nu s_io_rem_sym p q -> (mult (count p) v) <= (mult (count q) v))).
apply H1. clear H1.
intros n IH p q Heqn [x [H41 H42]].
(* now begins the induction step *)
assert (H3: 0 = mult (count p) v \/ 1 <= mult (count p) v) by omega.
destruct H3 as [H3 | H3].
- omega.
- destruct (unguarded_var_then_nil_step H3) as [p' H5].
destruct (H41 p q H42) as [H81 H82].
destruct H81 as [_ H81].
destruct (H81 v p' H5) as [q' [H61 H62]].
(* it must hold n > 0 *)
assert (H611: step_var_rem v q q') by auto.
apply nil_step_then_unguarded_var in H61.
destruct n. Focus 1. omega.
(* now use IH *)
apply step_var_rem_decreases_var_occurrence in H5.
apply step_var_rem_decreases_var_occurrence in H611.
rewrite <- H5. rewrite <- H611.
assert (mult (count p') v <= mult (count q') v).
{
destruct n; try omega.
specialize (IH n).
apply IH.
- simpl. omega.
- omega.
- exists x. split; auto.
}
omega.
Qed.
Lemma io_rem_bis_subset_io_multi_bis:
nu s_io_rem_sym <2= nu s_io_multi_sym.
Proof.
intros p q [x [H1 H2]].
exists (nu s_io_rem_sym). split.
- clear H2 p q.
intros p q [x' [H21 H22]].
destruct (H21 p q H22) as [[[H31 H32] H33] [[H34 H365] H66]].
split.
+ repeat split.
* eapply s_ho_out_mono; eauto.
repeat intro. exists x'; auto.
* eapply s_ho_in_mono; eauto.
repeat intro. exists x'; auto.
* apply nu_of_s_io_rem_sym_is_closed_under_s_var_multi.
exists x'. split; auto.
+ repeat split.
* eapply s_ho_out_mono; eauto.
repeat intro. exists x'; auto.
* eapply s_ho_in_mono; eauto.
repeat intro. exists x'; auto.
* { eapply s_var_multi_mono.
- apply nu_of_s_io_rem_sym_is_closed_under_s_var_multi.
exists (transp x'). split; auto.
repeat intro. apply symmetrize_fun_correct.
hnf. split; now apply H21.
- repeat intro.
apply sym_f_impl_sym_nu; auto.
apply symmetrize_fun_correct. }
- exists x. split; auto.
Qed.