Library Base
GlobalGlobal
Section Iteration.
Variable X : Type.
Variable f : X → X.
Fixpoint it (n : nat) (x : X) : X :=
match n with
| 0 ⇒ x
| S n' ⇒ f (it n' x)
end.
Lemma it_ind (p : X → Prop) x n :
p x → (∀ z, p z → p (f z)) → p (it n x).
Definition FP (x : X) : Prop := f x = x.
Lemma it_fp (sigma : X → nat) x :
(∀ n, FP (it n x) ∨ sigma (it n x) > sigma (it (S n) x)) →
FP (it (sigma x) x).
End Iteration.
Definition dec (X : Prop) : Type := {X} + {¬ X}.
Notation "'eq_dec' X" := (∀ x y : X, dec (x=y)) (at level 70).
Definition decision (X : Prop) (D : dec X) : dec X := D.
Tactic Notation "decide" constr(p) :=
destruct (decision p).
Tactic Notation "decide" constr(p) "as" simple_intropattern(i) :=
destruct (decision p) as i.
Instance True_dec : dec True :=
left I.
Instance False_dec : dec False :=
right (fun A ⇒ A).
Instance impl_dec (X Y : Prop) :
dec X → dec Y → dec (X → Y).
Instance and_dec (X Y : Prop) :
dec X → dec Y → dec (X ∧ Y).
Instance or_dec (X Y : Prop) :
dec X → dec Y → dec (X ∨ Y).
Instance not_dec (X : Prop) :
dec X → dec (¬ X).
Instance iff_dec (X Y : Prop) :
dec X → dec Y → dec (X ↔ Y).
Lemma dec_DN X :
dec X → ~~ X → X.
Lemma dec_DM_and X Y :
dec X → dec Y → ¬ (X ∧ Y) → ¬ X ∨ ¬ Y.
Lemma dec_DM_impl X Y :
dec X → dec Y → ¬ (X → Y) → X ∧ ¬ Y.
Lemma dec_prop_iff (X Y : Prop) :
(X ↔ Y) → dec X → dec Y.
Instance bool_eq_dec :
eq_dec bool.
Instance nat_eq_dec :
eq_dec nat.
Instance nat_le_dec (x y : nat) : dec (x ≤ y) :=
le_dec x y.
Definition equi X (A B : list X) : Prop :=
incl A B ∧ incl B A.
Notation "| A |" := (length A) (at level 65).
Notation "x 'el' A" := (In x A) (at level 70).
Notation "A <<= B" := (incl A B) (at level 70).
Notation "A === B" := (equi A B) (at level 70).
Lemma list_cycle (X : Type) (A : list X) x :
x::A ≠ A.
Decidability laws for lists
Instance list_eq_dec X :
eq_dec X → eq_dec (list X).
Instance list_in_dec (X : Type) (x : X) (A : list X) :
eq_dec X → dec (x ∊ A).
Lemma list_sigma_forall X A (p : X → Prop) (p_dec : ∀ x, dec (p x)) :
{x | x ∊ A ∧ p x} + {∀ x, x ∊ A → ¬ p x}.
Instance list_forall_dec X A (p : X → Prop) (p_dec : ∀ x, dec (p x)) :
dec (∀ x, x ∊ A → p x).
Instance list_exists_dec X A (p : X → Prop) (p_dec : ∀ x, dec (p x)) :
dec (∃ x, x ∊ A ∧ p x).
Lemma list_exists_DM X A (p : X → Prop) :
(∀ x, dec (p x)) →
¬ (∀ x, x ∊ A → ¬ p x) → ∃ x, x ∊ A ∧ p x.
Lemma list_cc X (p : X → Prop) A :
(∀ x, dec (p x)) →
(∃ x, x ∊ A ∧ p x) → {x | x ∊ A ∧ p x}.
Membership
We use the following facts from the standard library List.
Lemma in_sing X (x y : X) :
x ∊ [y] → x = y.
Lemma in_cons_neq X (x y : X) A :
x ∊ y::A → x ≠ y → x ∊ A.
Definition disjoint (X : Type) (A B : list X) :=
¬ ∃ x, x ∊ A ∧ x ∊ B.
Lemma disjoint_forall X (A B : list X) :
disjoint A B ↔ ∀ x, x ∊ A → ¬ x ∊ B.
Lemma disjoint_cons X (x : X) A B :
disjoint (x::A) B ↔ ¬ x ∊ B ∧ disjoint A B.
Inclusion
We use the following facts from the standard library List.
Lemma incl_nil X (A : list X) :
nil ⊆ A.
Lemma incl_map X Y A B (f : X → Y) :
A ⊆ B → map f A ⊆ map f B.
Section Inclusion.
Variable X : Type.
Implicit Types A B : list X.
Lemma incl_nil_eq A :
A ⊆ nil → A=nil.
Lemma incl_shift x A B :
A ⊆ B → x::A ⊆ x::B.
Lemma incl_lcons x A B :
x::A ⊆ B ↔ x ∊ B ∧ A ⊆ B.
Lemma incl_rcons x A B :
A ⊆ x::B → ¬ x ∊ A → A ⊆ B.
Lemma incl_lrcons x A B :
x::A ⊆ x::B → ¬ x ∊ A → A ⊆ B.
End Inclusion.
Definition inclp (X : Type) (A : list X) (p : X → Prop) : Prop :=
∀ x, x ∊ A → p x.
Setoid rewriting with list inclusion and list equivalence
Instance in_equi_proper X :
Proper (eq ==> @equi X ==> iff) (@In X).
Instance incl_equi_proper X :
Proper (@equi X ==> @equi X ==> iff) (@incl X).
Instance incl_preorder X : PreOrder (@incl X).
Instance equi_Equivalence X : Equivalence (@equi X).
Instance cons_equi_proper X :
Proper (eq ==> @equi X ==> @equi X) (@cons X).
Instance app_equi_proper X :
Proper (@equi X ==> @equi X ==> @equi X) (@app X).
Equivalence
Section Equi.
Variable X : Type.
Implicit Types A B : list X.
Lemma equi_push x A :
x ∊ A → A ≡ x::A.
Lemma equi_dup x A :
x::A ≡ x::x::A.
Lemma equi_swap x y A:
x::y::A ≡ y::x::A.
Lemma equi_shift x A B :
x::A++B ≡ A++x::B.
Lemma equi_rotate x A :
x::A ≡ A++[x].
End Equi.
Definition filter (X : Type) (p : X → Prop) (p_dec : ∀ x, dec (p x)) : list X → list X :=
fix f A := match A with
| nil ⇒ nil
| x::A' ⇒ if decision (p x) then x :: f A' else f A'
end.
Section FilterLemmas.
Variable X : Type.
Variable p : X → Prop.
Context {p_dec : ∀ x, dec (p x)}.
Lemma in_filter_iff x A :
x ∊ filter p A ↔ x ∊ A ∧ p x.
Lemma filter_incl A :
filter p A ⊆ A.
Lemma filter_mono A B :
A ⊆ B → filter p A ⊆ filter p B.
Lemma filter_fst x A :
p x → filter p (x::A) = x::filter p A.
Lemma filter_app A B :
filter p (A ++ B) = filter p A ++ filter p B.
Lemma filter_fst' x A :
¬ p x → filter p (x::A) = filter p A.
End FilterLemmas.
Section FilterLemmas_pq.
Variable X : Type.
Variable p q : X → Prop.
Context {p_dec : ∀ x, dec (p x)}.
Context {q_dec : ∀ x, dec (q x)}.
Lemma filter_pq_mono A :
(∀ x, x ∊ A → p x → q x) → filter p A ⊆ filter q A.
Lemma filter_pq_eq A :
(∀ x, x ∊ A → (p x ↔ q x)) → filter p A = filter q A.
Lemma filter_and A :
filter p (filter q A) = filter (fun x ⇒ p x ∧ q x) A.
End FilterLemmas_pq.
Section FilterComm.
Variable X : Type.
Variable p q : X → Prop.
Context {p_dec : ∀ x, dec (p x)}.
Context {q_dec : ∀ x, dec (q x)}.
Lemma filter_comm A :
filter p (filter q A) = filter q (filter p A).
End FilterComm.
Section Removal.
Variable X : Type.
Context {eq_X_dec : eq_dec X}.
Definition rem (A : list X) (x : X) : list X :=
filter (fun z ⇒ z ≠ x) A.
Lemma in_rem_iff x A y :
x ∊ rem A y ↔ x ∊ A ∧ x ≠ y.
Lemma rem_not_in x y A :
x = y ∨ ¬ x ∊ A → ¬ x ∊ rem A y.
Lemma rem_incl A x :
rem A x ⊆ A.
Lemma rem_mono A B x :
A ⊆ B → rem A x ⊆ rem B x.
Lemma rem_cons A B x :
A ⊆ B → rem (x::A) x ⊆ B.
Lemma rem_cons' A B x y :
x ∊ B → rem A y ⊆ B → rem (x::A) y ⊆ B.
Lemma rem_in x y A :
x ∊ rem A y → x ∊ A.
Lemma rem_neq x y A :
x ≠ y → x ∊ A → x ∊ rem A y.
Lemma rem_app x A B :
x ∊ A → B ⊆ A ++ rem B x.
Lemma rem_app' x A B C :
rem A x ⊆ C → rem B x ⊆ C → rem (A ++ B) x ⊆ C.
Lemma rem_equi x A :
x::A ≡ x::rem A x.
Lemma rem_comm A x y :
rem (rem A x) y = rem (rem A y) x.
Lemma rem_fst x A :
rem (x::A) x = rem A x.
Lemma rem_fst' x y A :
x ≠ y → rem (x::A) y = x::rem A y.
End Removal.
Inductive dupfree (X : Type) : list X → Prop :=
| dupfreeN : dupfree nil
| dupfreeC x A : ¬ x ∊ A → dupfree A → dupfree (x::A).
Section Dupfree.
Variable X : Type.
Implicit Types A B : list X.
Lemma dupfree_inv x A :
dupfree (x::A) ↔ ¬ x ∊ A ∧ dupfree A.
Lemma dupfree_app A B :
disjoint A B → dupfree A → dupfree B → dupfree (A++B).
Lemma dupfree_map Y A (f : X → Y) :
(∀ x y, x ∊ A → y ∊ A → f x = f y → x=y) →
dupfree A → dupfree (map f A).
Lemma dupfree_filter p (p_dec : ∀ x, dec (p x)) A :
dupfree A → dupfree (filter p A).
Lemma dupfree_dec A :
eq_dec X → dec (dupfree A).
End Dupfree.
Section Undup.
Variable X : Type.
Context {eq_X_dec : eq_dec X}.
Implicit Types A B : list X.
Fixpoint undup (A : list X) : list X :=
match A with
| nil ⇒ nil
| x::A' ⇒ if decision (x ∊ A') then undup A' else x :: undup A'
end.
Lemma undup_fp_equi A :
undup A ≡ A.
Lemma dupfree_undup A :
dupfree (undup A).
Lemma undup_incl A B :
A ⊆ B ↔ undup A ⊆ undup B.
Lemma undup_equi A B :
A ≡ B ↔ undup A ≡ undup B.
Lemma undup_eq A :
dupfree A → undup A = A.
Lemma undup_idempotent A :
undup (undup A) = undup A.
End Undup.
Section DupfreeLength.
Variable X : Type.
Implicit Types A B : list X.
Lemma dupfree_reorder A x :
dupfree A → x ∊ A →
∃ A', A ≡ x::A' ∧ |A'| < |A| ∧ dupfree (x::A').
Lemma dupfree_le A B :
dupfree A → dupfree B → A ⊆ B → |A| ≤ |B|.
Lemma dupfree_eq A B :
dupfree A → dupfree B → A ≡ B → |A|=|B|.
Lemma dupfree_lt A B x :
dupfree A → dupfree B → A ⊆ B →
x ∊ B → ¬ x ∊ A → |A| < |B|.
Lemma dupfree_ex A B :
eq_dec X → dupfree A → dupfree B → |A| < |B| → ∃ x, x ∊ B ∧ ¬ x ∊ A.
Lemma dupfree_equi A B :
eq_dec X → dupfree A → dupfree B → A ⊆ B → |A|=|B| → A ≡ B.
End DupfreeLength.
Section Cardinality.
Variable X : Type.
Context {eq_X_dec : eq_dec X}.
Implicit Types A B : list X.
Definition card (A : list X) : nat := |undup A|.
Lemma card_le A B :
A ⊆ B → card A ≤ card B.
Lemma card_eq A B :
A ≡ B → card A = card B.
Lemma card_equi A B :
A ⊆ B → card A = card B → A ≡ B.
Lemma card_lt A B x :
A ⊆ B → x ∊ B → ¬ x ∊ A → card A < card B.
Lemma card_or A B :
A ⊆ B → A ≡ B ∨ card A < card B.
Lemma card_ex A B :
card A < card B → ∃ x, x ∊ B ∧ ¬ x ∊ A.
Lemma card_cons x A :
card (x::A) = if decision (x ∊ A) then card A else 1 + card A.
Lemma card_cons_rem x A :
card (x::A) = 1 + card (rem A x).
Lemma card_0 A :
card A = 0 → A = nil.
End Cardinality.
Instance card_equi_proper X (D: eq_dec X) :
Proper (@equi X ==> eq) (@card X D).
Section PowerRep.
Variable X : Type.
Context {eq_X_dec : eq_dec X}.
Fixpoint power (U : list X ) : list (list X) :=
match U with
| nil ⇒ [nil]
| x :: U' ⇒ power U' ++ map (cons x) (power U')
end.
Lemma power_incl A U :
A ∊ power U → A ⊆ U.
Lemma power_nil U :
nil ∊ power U.
Definition rep (A U : list X) : list X :=
filter (fun x ⇒ x ∊ A) U.
Lemma rep_power A U :
rep A U ∊ power U.
Lemma rep_incl A U :
rep A U ⊆ A.
Lemma rep_in x A U :
A ⊆ U → x ∊ A → x ∊ rep A U.
Lemma rep_equi A U :
A ⊆ U → rep A U ≡ A.
Lemma rep_mono A B U :
A ⊆ B → rep A U ⊆ rep B U.
Lemma rep_eq' A B U :
(∀ x, x ∊ U → (x ∊ A ↔ x ∊ B)) → rep A U = rep B U.
Lemma rep_eq A B U :
A ≡ B → rep A U = rep B U.
Lemma rep_injective A B U :
A ⊆ U → B ⊆ U → rep A U = rep B U → A ≡ B.
Lemma rep_idempotent A U :
rep (rep A U) U = rep A U.
Lemma dupfree_power U :
dupfree U → dupfree (power U).
Lemma dupfree_in_power U A :
A ∊ power U → dupfree U → dupfree A.
Lemma rep_dupfree A U :
dupfree U → A ∊ power U → rep A U = A.
Lemma power_extensional A B U :
dupfree U → A ∊ power U → B ∊ power U → A ≡ B → A = B.
End PowerRep.
Module FCI.
Section FCI.
Variable X : Type.
Context {eq_X_dec : eq_dec X}.
Variable step : list X → X → Prop.
Context {step_dec : ∀ A x, dec (step A x)}.
Variable V : list X.
Lemma pick (A : list X) :
{ x | x ∊ V ∧ step A x ∧ ¬ x ∊ A } + { ∀ x, x ∊ V → step A x → x ∊ A }.
Definition F (A : list X) : list X.
Defined.
Definition C := it F (card V) nil.
Lemma it_incl n :
it F n nil ⊆ V.
Lemma incl :
C ⊆ V.
Lemma ind p :
(∀ A x, inclp A p → x ∊ V → step A x → p x) → inclp C p.
Lemma fp :
F C = C.
Lemma closure x :
x ∊ V → step C x → x ∊ C.
End FCI.
End FCI.
Lemma complete_induction (p : nat → Prop) (x : nat) :
(∀ x, (∀ y, y<x → p y) → p x) → p x.
Lemma size_induction X (f : X → nat) (p : X → Prop) :
(∀ x, (∀ y, f y < f x → p y) → p x) →
∀ x, p x.
Section pos.
Definition elAt := nth_error.
Notation "A '.[' i ']'" := (elAt A i) (no associativity, at level 50).
Fixpoint pos (X : Type) {e : eq_dec X} (s : X) (A : list X) :=
match A with
| nil ⇒ None
| a :: A ⇒ if decision (s = a) then Some 0 else match pos s A with None ⇒ None | Some n ⇒ Some (S n) end
end.
Lemma el_pos X (E : eq_dec X) s A : s ∊ A → ∃ m, pos s A = Some m.
Lemma pos_elAt X (_ : eq_dec X) s A i : pos s A = Some i → A .[i] = Some s.
Lemma elAt_app X (A : list X) i B s : A .[i] = Some s → (A ++ B).[i] = Some s.
Lemma elAt_el (X : Type) A (s : X) m : A .[ m ] = Some s → s ∊ A.
Lemma el_elAt X {_ : eq_dec X} (s : X) A : s ∊ A → ∃ m, A .[ m ] = Some s.
Lemma dupfree_elAt X (A : list X) n m s : dupfree A → A.[n] = Some s → A.[m] = Some s → n = m.
Lemma nth_error_none A n l : nth_error l n = @None A → length l ≤ n.
End pos.