General Header Autosubst - Assumptions and Definitions
Axiomatic Assumptions
For our development, during rewriting of the reduction rules, we have to extend Coq with two well known axiomatic assumptions, namely functional extensionality and propositional extensionality. The latter entails proof irrelevance.Functional Extensionality
We import the axiom from the Coq Standard Library and derive a utility tactic to make the assumption practically usable.
Require Import Coq.Logic.FunctionalExtensionality.
Require Import Program.Tactics.
Tactic Notation "nointr" tactic(t) :=
let m := fresh "marker" in
pose (m := tt);
t; revert_until m; clear m.
Ltac fext := nointr repeat (
match goal with
[ |- ?x = ?y ] =>
(refine (@functional_extensionality_dep _ _ _ _ _) ||
refine (@forall_extensionality _ _ _ _) ||
refine (@forall_extensionalityP _ _ _ _) ||
refine (@forall_extensionalityS _ _ _ _)); intro
end).
Require Import Program.Tactics.
Tactic Notation "nointr" tactic(t) :=
let m := fresh "marker" in
pose (m := tt);
t; revert_until m; clear m.
Ltac fext := nointr repeat (
match goal with
[ |- ?x = ?y ] =>
(refine (@functional_extensionality_dep _ _ _ _ _) ||
refine (@forall_extensionality _ _ _ _) ||
refine (@forall_extensionalityP _ _ _ _) ||
refine (@forall_extensionalityS _ _ _ _)); intro
end).
Functor Instances
List Instance
Require Export List.
Definition funcomp {X Y Z} (g : Y -> Z) (f : X -> Y) :=
fun x => g (f x).
Notation "'list_map'" := map.
Definition list_ext {A B} {f g : A -> B} :
(forall x, f x = g x) -> forall xs, list_map f xs = map g xs.
intros H. induction xs. reflexivity.
cbn. f_equal. apply H. apply IHxs.
Defined.
Definition list_id {A} { f : A -> A} :
(forall x, f x = x) -> forall xs, List.map f xs = xs.
Proof.
intros H. induction xs. reflexivity.
cbn. rewrite H. rewrite IHxs; eauto.
Defined.
Definition list_comp {A B C} {f: A -> B} {g: B -> C} {h} :
(forall x, (funcomp g f) x = h x) -> forall xs, map g (map f xs) = map h xs.
Proof.
induction xs. reflexivity.
cbn. rewrite <- H. f_equal. apply IHxs.
Defined.
Definition funcomp {X Y Z} (g : Y -> Z) (f : X -> Y) :=
fun x => g (f x).
Notation "'list_map'" := map.
Definition list_ext {A B} {f g : A -> B} :
(forall x, f x = g x) -> forall xs, list_map f xs = map g xs.
intros H. induction xs. reflexivity.
cbn. f_equal. apply H. apply IHxs.
Defined.
Definition list_id {A} { f : A -> A} :
(forall x, f x = x) -> forall xs, List.map f xs = xs.
Proof.
intros H. induction xs. reflexivity.
cbn. rewrite H. rewrite IHxs; eauto.
Defined.
Definition list_comp {A B C} {f: A -> B} {g: B -> C} {h} :
(forall x, (funcomp g f) x = h x) -> forall xs, map g (map f xs) = map h xs.
Proof.
induction xs. reflexivity.
cbn. rewrite <- H. f_equal. apply IHxs.
Defined.
Definition prod_map {A B C D} (f : A -> C) (g : B -> D) (p : A * B) :
C * D.
Proof.
destruct p. split. auto. auto.
Defined.
Definition prod_id {A B} {f : A -> A} {g : B -> B} :
(forall x, f x = x) -> (forall x, g x = x) -> forall p, prod_map f g p = p.
Proof.
intros. destruct p. cbn. f_equal; auto.
Defined.
Definition prod_ext {A B C D} {f f' : A -> C} {g g': B -> D} :
(forall x, f x = f' x) -> (forall x, g x = g' x) -> forall p, prod_map f g p = prod_map f' g' p.
Proof.
intros. destruct p. cbn. f_equal; auto.
Defined.
Definition prod_comp {A B C D E F} {f1 : A -> C} {g1 : C -> E} { h1} {f2: B -> D} {g2: D -> F} {h2}:
(forall x, (funcomp g1 f1) x = h1 x) -> (forall x, (funcomp g2 f2) x = h2 x) -> forall p, prod_map g1 g2 (prod_map f1 f2 p) = prod_map h1 h2 p.
Proof.
intros. destruct p. cbn. f_equal; auto.
now rewrite <- H. now rewrite <- H0.
Defined.
Definition cod X A: Type := X -> A.
Definition cod_map {X} {A B} (f : A -> B) (p : X -> A) :
X -> B.
Proof. eauto. Defined.
Note that this requires functional extensionality.
Definition cod_id {X} {A} {f : A -> A} :
(forall x, f x = x) -> forall (p: X -> A), cod_map f p = p.
Proof. intros H p. unfold cod_map. fext. congruence. Defined.
Definition cod_ext {X} {A B} {f f' : A -> B} :
(forall x, f x = f' x) -> forall (p: X -> A), cod_map f p = cod_map f' p.
Proof. intros H p. unfold cod_map. fext. congruence. Defined.
Definition cod_comp {X} {A B C} {f : A -> B} {g : B -> C} {h} :
(forall x, (funcomp g f) x = h x) -> forall (p: X -> _), cod_map g (cod_map f p) = cod_map h p.
Proof. intros H p. unfold cod_map. fext. intros x. now rewrite <- H. Defined.
Hint Rewrite in_map_iff : FunctorInstances.
(forall x, f x = x) -> forall (p: X -> A), cod_map f p = p.
Proof. intros H p. unfold cod_map. fext. congruence. Defined.
Definition cod_ext {X} {A B} {f f' : A -> B} :
(forall x, f x = f' x) -> forall (p: X -> A), cod_map f p = cod_map f' p.
Proof. intros H p. unfold cod_map. fext. congruence. Defined.
Definition cod_comp {X} {A B C} {f : A -> B} {g : B -> C} {h} :
(forall x, (funcomp g f) x = h x) -> forall (p: X -> _), cod_map g (cod_map f p) = cod_map h p.
Proof. intros H p. unfold cod_map. fext. intros x. now rewrite <- H. Defined.
Hint Rewrite in_map_iff : FunctorInstances.