Library Base

Base Library for ICL

  • Author: Gert Smolka, Saarland University
  • Version: 4 June 2014


Global Set Implicit Arguments.


Require Export Omega List Morphisms.


Ltac inv H := inversion H; subst; clear H.

Iteration


Section Iteration.
  Variable X : Type.
  Variable f : X X.

  Fixpoint it (n : nat) (x : X) : X :=
    match n with
      | 0 ⇒ x
      | S n'f (it n' x)
    end.

  Lemma it_ind (p : X Prop) x n :
    p x ( z, p z p (f z)) p (it n x).

  Definition FP (x : X) : Prop := f x = x.

  Lemma it_fp (sigma : X nat) x :
    ( n, FP (it n x) sigma (it n x) > sigma (it (S n) x))
    FP (it (sigma x) x).
End Iteration.

Decidability


Definition dec (X : Prop) : Type := {X} + {¬ X}.

Notation "'eq_dec' X" := ( x y : X, dec (x=y)) (at level 70).



Definition decision (X : Prop) (D : dec X) : dec X := D.

Tactic Notation "decide" constr(p) :=
  destruct (decision p).
Tactic Notation "decide" constr(p) "as" simple_intropattern(i) :=
  destruct (decision p) as i.


Hint Unfold dec.
Hint Extern 4 ⇒
match goal with
  | [ |- dec ?p ] ⇒ exact (decision p)
end.


Hint Extern 4 ⇒
match goal with
  | [ |- dec ((fun __) _) ] ⇒ simpl
end : typeclass_instances.


Instance True_dec : dec True :=
  left I.

Instance False_dec : dec False :=
  right (fun AA).

Instance impl_dec (X Y : Prop) :
  dec X dec Y dec (X Y).

Instance and_dec (X Y : Prop) :
  dec X dec Y dec (X Y).

Instance or_dec (X Y : Prop) :
  dec X dec Y dec (X Y).


Instance not_dec (X : Prop) :
  dec X dec (¬ X).

Instance iff_dec (X Y : Prop) :
  dec X dec Y dec (X Y).

Lemma dec_DN X :
  dec X ~~ X X.

Lemma dec_DM_and X Y :
  dec X dec Y ¬ (X Y) ¬ X ¬ Y.

Lemma dec_DM_impl X Y :
  dec X dec Y ¬ (X Y) X ¬ Y.

Lemma dec_prop_iff (X Y : Prop) :
  (X Y) dec X dec Y.

Instance bool_eq_dec :
  eq_dec bool.

Instance nat_eq_dec :
  eq_dec nat.

Instance nat_le_dec (x y : nat) : dec (x y) :=
  le_dec x y.

Instance prod_eq_dec X Y (HX: eq_dec X) (HY : eq_dec Y): eq_dec (X × Y).

Lists



Definition equi X (A B : list X) : Prop :=
  incl A B incl B A.

Hint Unfold equi.

Export ListNotations.
Notation "| A |" := (length A) (at level 65).
Notation "x 'el' A" := (In x A) (at level 70).
Notation "A <<= B" := (incl A B) (at level 70).
Notation "A === B" := (equi A B) (at level 70).



Lemma list_cycle (X : Type) (A : list X) x :
  x::A A.

Decidability laws for lists

Instance list_eq_dec X :
  eq_dec X eq_dec (list X).

Instance list_in_dec (X : Type) (x : X) (A : list X) :
  eq_dec X dec (x A).

Lemma list_sigma_forall X A (p : X Prop) (p_dec : x, dec (p x)) :
  {x | x A p x} + { x, x A ¬ p x}.


Instance list_forall_dec X A (p : X Prop) (p_dec : x, dec (p x)) :
  dec ( x, x A p x).

Instance list_exists_dec X A (p : X Prop) (p_dec : x, dec (p x)) :
  dec ( x, x A p x).

Lemma list_exists_DM X A (p : X Prop) :
  ( x, dec (p x))
  ¬ ( x, x A ¬ p x) x, x A p x.

Lemma list_cc X (p : X Prop) A :
  ( x, dec (p x))
  ( x, x A p x) {x | x A p x}.

Membership
We use the following facts from the standard library List.

Hint Resolve in_eq in_nil in_cons in_or_app.

Lemma in_sing X (x y : X) :
  x [y] x = y.

Lemma in_cons_neq X (x y : X) A :
  x y::A x y x A.

Definition disjoint (X : Type) (A B : list X) :=
  ¬ x, x A x B.

Lemma disjoint_forall X (A B : list X) :
  disjoint A B x, x A ¬ x B.

Lemma disjoint_cons X (x : X) A B :
  disjoint (x::A) B ¬ x B disjoint A B.

Inclusion
We use the following facts from the standard library List.
  • A B = y, x A x B
  • incl_refl : A A
  • incl_tl : A B A x::B
  • incl_cons : x B A B x::A B
  • incl_appl : A B A B++C
  • incl_appr : A C A B++C
  • incl_app : A C B C A++B C

Hint Resolve incl_refl incl_tl incl_cons incl_appl incl_appr incl_app.

Lemma incl_nil X (A : list X) :
  nil A.

Hint Resolve incl_nil.

Lemma incl_map X Y A B (f : X Y) :
  A B map f A map f B.

Section Inclusion.
  Variable X : Type.
  Implicit Types A B : list X.

  Lemma incl_nil_eq A :
    A nil A=nil.

  Lemma incl_shift x A B :
    A B x::A x::B.

  Lemma incl_lcons x A B :
    x::A B x B A B.

  Lemma incl_rcons x A B :
    A x::B ¬ x A A B.

  Lemma incl_lrcons x A B :
    x::A x::B ¬ x A A B.

End Inclusion.

Hint Resolve incl_shift.

Definition inclp (X : Type) (A : list X) (p : X Prop) : Prop :=
   x, x A p x.

Setoid rewriting with list inclusion and list equivalence

Instance in_equi_proper X :
  Proper (eq ==> @equi X ==> iff) (@In X).


Instance incl_equi_proper X :
  Proper (@equi X ==> @equi X ==> iff) (@incl X).


Instance incl_preorder X : PreOrder (@incl X).


Instance equi_Equivalence X : Equivalence (@equi X).


Instance cons_equi_proper X :
  Proper (eq ==> @equi X ==> @equi X) (@cons X).


Instance app_equi_proper X :
  Proper (@equi X ==> @equi X ==> @equi X) (@app X).


Equivalence

Section Equi.
  Variable X : Type.
  Implicit Types A B : list X.

  Lemma equi_push x A :
    x A A x::A.

  Lemma equi_dup x A :
    x::A x::x::A.

  Lemma equi_swap x y A:
    x::y::A y::x::A.

  Lemma equi_shift x A B :
    x::A++B A++x::B.

  Lemma equi_rotate x A :
    x::A A++[x].
End Equi.

Filter


Definition filter (X : Type) (p : X Prop) (p_dec : x, dec (p x)) : list X list X :=
  fix f A := match A with
              | nilnil
              | x::A'if decision (p x) then x :: f A' else f A'
            end.


Section FilterLemmas.
  Variable X : Type.
  Variable p : X Prop.
  Context {p_dec : x, dec (p x)}.

  Lemma in_filter_iff x A :
    x filter p A x A p x.

  Lemma filter_incl A :
    filter p A A.

  Lemma filter_mono A B :
    A B filter p A filter p B.

  Lemma filter_fst x A :
    p x filter p (x::A) = x::filter p A.

  Lemma filter_app A B :
    filter p (A ++ B) = filter p A ++ filter p B.

  Lemma filter_fst' x A :
    ¬ p x filter p (x::A) = filter p A.

End FilterLemmas.

Section FilterLemmas_pq.
  Variable X : Type.
  Variable p q : X Prop.
  Context {p_dec : x, dec (p x)}.
  Context {q_dec : x, dec (q x)}.

  Lemma filter_pq_mono A :
    ( x, x A p x q x) filter p A filter q A.

  Lemma filter_pq_eq A :
    ( x, x A (p x q x)) filter p A = filter q A.

  Lemma filter_and A :
    filter p (filter q A) = filter (fun xp x q x) A.

End FilterLemmas_pq.

Section FilterComm.
  Variable X : Type.
  Variable p q : X Prop.
  Context {p_dec : x, dec (p x)}.
  Context {q_dec : x, dec (q x)}.

  Lemma filter_comm A :
    filter p (filter q A) = filter q (filter p A).
End FilterComm.

Element removal


Section Removal.
  Variable X : Type.
  Context {eq_X_dec : eq_dec X}.

  Definition rem (A : list X) (x : X) : list X :=
    filter (fun zz x) A.

  Lemma in_rem_iff x A y :
    x rem A y x A x y.

  Lemma rem_not_in x y A :
    x = y ¬ x A ¬ x rem A y.

  Lemma rem_incl A x :
    rem A x A.

  Lemma rem_mono A B x :
    A B rem A x rem B x.

  Lemma rem_cons A B x :
    A B rem (x::A) x B.

  Lemma rem_cons' A B x y :
    x B rem A y B rem (x::A) y B.

  Lemma rem_in x y A :
    x rem A y x A.

  Lemma rem_neq x y A :
    x y x A x rem A y.

  Lemma rem_app x A B :
    x A B A ++ rem B x.

  Lemma rem_app' x A B C :
    rem A x C rem B x C rem (A ++ B) x C.

  Lemma rem_equi x A :
    x::A x::rem A x.

  Lemma rem_comm A x y :
    rem (rem A x) y = rem (rem A y) x.

  Lemma rem_fst x A :
    rem (x::A) x = rem A x.

  Lemma rem_fst' x y A :
    x y rem (x::A) y = x::rem A y.

End Removal.

Hint Resolve rem_not_in rem_incl rem_mono rem_cons rem_cons' rem_app rem_app' rem_in rem_neq.

Duplicate-free lists


Inductive dupfree (X : Type) : list X Prop :=
| dupfreeN : dupfree nil
| dupfreeC x A : ¬ x A dupfree A dupfree (x::A).

Section Dupfree.
  Variable X : Type.
  Implicit Types A B : list X.

  Lemma dupfree_inv x A :
    dupfree (x::A) ¬ x A dupfree A.

  Lemma dupfree_app A B :
    disjoint A B dupfree A dupfree B dupfree (A++B).

  Lemma dupfree_map Y A (f : X Y) :
    ( x y, x A y A f x = f y x=y)
    dupfree A dupfree (map f A).

  Lemma dupfree_filter p (p_dec : x, dec (p x)) A :
    dupfree A dupfree (filter p A).

  Lemma dupfree_dec A :
    eq_dec X dec (dupfree A).

End Dupfree.

Section Undup.
  Variable X : Type.
  Context {eq_X_dec : eq_dec X}.
  Implicit Types A B : list X.

  Fixpoint undup (A : list X) : list X :=
    match A with
      | nilnil
      | x::A'if decision (x A') then undup A' else x :: undup A'
    end.

  Lemma undup_fp_equi A :
    undup A A.

  Lemma dupfree_undup A :
    dupfree (undup A).

  Lemma undup_incl A B :
    A B undup A undup B.

  Lemma undup_equi A B :
    A B undup A undup B.

  Lemma undup_eq A :
    dupfree A undup A = A.

  Lemma undup_idempotent A :
    undup (undup A) = undup A.

End Undup.

Section DupfreeLength.
  Variable X : Type.
  Implicit Types A B : list X.

  Lemma dupfree_reorder A x :
    dupfree A x A
     A', A x::A' |A'| < |A| dupfree (x::A').
  Lemma dupfree_le A B :
    dupfree A dupfree B A B |A| |B|.

  Lemma dupfree_eq A B :
    dupfree A dupfree B A B |A|=|B|.

  Lemma dupfree_lt A B x :
    dupfree A dupfree B A B
    x B ¬ x A |A| < |B|.

  Lemma dupfree_ex A B :
    eq_dec X dupfree A dupfree B |A| < |B| x, x B ¬ x A.

  Lemma dupfree_equi A B :
    eq_dec X dupfree A dupfree B A B |A|=|B| A B.

End DupfreeLength.

Cardinality


Section Cardinality.
  Variable X : Type.
  Context {eq_X_dec : eq_dec X}.
  Implicit Types A B : list X.

  Definition card (A : list X) : nat := |undup A|.

  Lemma card_le A B :
    A B card A card B.

  Lemma card_eq A B :
    A B card A = card B.

  Lemma card_equi A B :
    A B card A = card B A B.

  Lemma card_lt A B x :
    A B x B ¬ x A card A < card B.

  Lemma card_or A B :
    A B A B card A < card B.

  Lemma card_ex A B :
    card A < card B x, x B ¬ x A.

  Lemma card_cons x A :
    card (x::A) = if decision (x A) then card A else 1 + card A.

  Lemma card_cons_rem x A :
    card (x::A) = 1 + card (rem A x).

  Lemma card_0 A :
    card A = 0 A = nil.

End Cardinality.

Instance card_equi_proper X (D: eq_dec X) :
  Proper (@equi X ==> eq) (@card X D).

Power lists


Section PowerRep.
  Variable X : Type.
  Context {eq_X_dec : eq_dec X}.

  Fixpoint power (U : list X ) : list (list X) :=
    match U with
      | nil[nil]
      | x :: U'power U' ++ map (cons x) (power U')
    end.

  Lemma power_incl A U :
    A power U A U.

  Lemma power_nil U :
    nil power U.

  Definition rep (A U : list X) : list X :=
    filter (fun xx A) U.

  Lemma rep_power A U :
    rep A U power U.

  Lemma rep_incl A U :
    rep A U A.

  Lemma rep_in x A U :
    A U x A x rep A U.

  Lemma rep_equi A U :
    A U rep A U A.

  Lemma rep_mono A B U :
    A B rep A U rep B U.

  Lemma rep_eq' A B U :
    ( x, x U (x A x B)) rep A U = rep B U.

  Lemma rep_eq A B U :
    A B rep A U = rep B U.

  Lemma rep_injective A B U :
    A U B U rep A U = rep B U A B.

  Lemma rep_idempotent A U :
    rep (rep A U) U = rep A U.

  Lemma dupfree_power U :
    dupfree U dupfree (power U).

  Lemma dupfree_in_power U A :
    A power U dupfree U dupfree A.

  Lemma rep_dupfree A U :
    dupfree U A power U rep A U = A.

  Lemma power_extensional A B U :
    dupfree U A power U B power U A B A = B.

End PowerRep.

Finite closure iteration


Module FCI.
Section FCI.
  Variable X : Type.
  Context {eq_X_dec : eq_dec X}.
  Variable step : list X X Prop.
  Context {step_dec : A x, dec (step A x)}.
  Variable V : list X.

  Lemma pick (A : list X) :
    { x | x V step A x ¬ x A } + { x, x V step A x x A }.

  Definition F (A : list X) : list X.
  Defined.

  Definition C := it F (card V) nil.

  Lemma it_incl n :
    it F n nil V.

  Lemma incl :
    C V.

  Lemma ind p :
    ( A x, inclp A p x V step A x p x) inclp C p.

  Lemma fp :
    F C = C.

  Lemma closure x :
    x V step C x x C.

End FCI.
End FCI.

Lemma complete_induction (p : nat Type) (x : nat) :
( x, ( y, y<x p y) p x) p x.

Lemma size_induction X (f : X nat) (p : X Type) :
  ( x, ( y, f y < f x p y) p x)
   x, p x.

Section pos.

  Definition elAt := nth_error.
  Notation "A '.[' i ']'" := (elAt A i) (no associativity, at level 50).

  Variable X:Type.
  Context {Eq_dec:eq_dec X}.
  Fixpoint pos (s : X) (A : list X) :=
    match A with
      | nilNone
      | a :: Aif decision (s = a) then Some 0 else match pos s A with NoneNone | Some nSome (S n) end
    end.

  Lemma el_pos s A : s A m, pos s A = Some m.

  Lemma pos_elAt s A i : pos s A = Some i A .[i] = Some s.

  Lemma elAt_app (A : list X) i B s : A .[i] = Some s (A ++ B).[i] = Some s.

  Lemma elAt_el A (s : X) m : A .[ m ] = Some s s A.

  Lemma el_elAt (s : X) A : s A m, A .[ m ] = Some s.

Lemma dupfree_elAt (A : list X) n m s : dupfree A A.[n] = Some s A.[m] = Some s n = m.

Lemma nth_error_none A n l : nth_error l n = @None A length l n.

End pos.