Set Implicit Arguments.
Require Import BA.External.
Require Import Coq.Init.Nat.
Require Import BasicDefs.
Require Import Seqs.
Require Import BA.External.
Require Import Coq.Init.Nat.
Require Import BasicDefs.
Require Import Seqs.
Section StrictlyMonotoneSeqs.
Definition s_monotone (f: Seq nat):= forall n, f n < f ( S n).
Lemma s_monotone_id : s_monotone (fun n => n).
Proof.
intros n. omega.
Qed.
Lemma s_monotone_unbouded (f: Seq nat): s_monotone f ->
(forall n, Sigma i, f i >= n).
Proof.
intros A n.
induction n.
- exists 0. omega.
- destruct IHn as [n' P].
exists (S n').
specialize (A n').
omega.
Qed.
Lemma s_monotone_unbouded_ge (f: Seq nat): s_monotone f ->
(forall n, Sigma i, f i > n).
Proof.
intros A n.
destruct (s_monotone_unbouded A n) as [i P].
exists (S i).
specialize (A i). omega.
Qed.
Lemma s_monotone_ge f: s_monotone f -> forall n, n <= f n.
Proof.
intros F n.
induction n.
- omega.
- specialize (F n). omega.
Qed.
Lemma s_monotone_strict_order_preserving f k n: s_monotone f -> k < n -> f k < f n.
Proof.
intros F L.
remember (n - k) as z.
assert (n = k + z) by omega. subst n.
induction z.
+ exfalso. omega.
+ rewrite_eq (k + S z = S (k + z)).
decide (z = 0) as [D|D].
- subst z. rewrite_eq (k+0 = k). apply F.
- specialize (F (k + z)).
enough (f k < f (k + z)) by omega.
apply IHz; omega.
Qed.
Lemma s_monotone_order_preserving f k n: s_monotone f -> k <= n -> f k <= f n.
Proof.
intros F L.
decide (k = n).
- subst n. omega.
- enough (f k < f n) by omega.
apply s_monotone_strict_order_preserving; oauto.
Qed.
Lemma s_monotone_order_preserving_backwards f k n: s_monotone f -> f k <= f n -> k <= n.
Proof.
intros F L.
decide (k <= n).
- auto.
- exfalso.
assert (n < k) as H by omega.
apply s_monotone_order_preserving with (f:=f) in H.
specialize (F n).
omega.
assumption.
Qed.
Lemma s_monotone_ge_zero g: s_monotone g -> g 0 > 0 -> forall n, g n > 0.
Proof.
intros Inc GZ. intros n.
destruct n.
- apply GZ.
- enough (g (S n) >= S n) by omega. now apply s_monotone_ge.
Qed.
Lemma s_monotone_drop g k : s_monotone g -> s_monotone (drop k g).
Proof.
intros Inc n. repeat rewrite drop_correct. rewrite_eq (k + S n = S ( k + n)). apply Inc.
Qed.
Chaining strictly monotone sequences preserves strict monotonicity.
Lemma compose_s_monotone f g: s_monotone f -> s_monotone g -> s_monotone (fun n => g ( f n)).
Proof.
intros F G.
intros n.
specialize (F n).
pose (p := (s_monotone_order_preserving G F)).
now apply s_monotone_strict_order_preserving.
Qed.
Proof.
intros F G.
intros n.
specialize (F n).
pose (p := (s_monotone_order_preserving G F)).
now apply s_monotone_strict_order_preserving.
Qed.
For a given function f, fix f 0 = 0. This preserves strict monotonicity.
Definition fix_first_zero (f:nat -> nat) := fun n => match n with
| 0 => 0
| S n => f (S n) end.
Lemma fix_first_zero_s_monotone f : s_monotone f -> s_monotone (fix_first_zero f).
Proof.
intros IncF n. destruct n; simpl.
- specialize (IncF 0). omega.
- apply IncF.
Qed.
End StrictlyMonotoneSeqs.
| 0 => 0
| S n => f (S n) end.
Lemma fix_first_zero_s_monotone f : s_monotone f -> s_monotone (fix_first_zero f).
Proof.
intros IncF n. destruct n; simpl.
- specialize (IncF 0). omega.
- apply IncF.
Qed.
End StrictlyMonotoneSeqs.