(* Set Implicit Arguments. *)
Require Import BA.External.
Require Import Seqs.
Require Import BasicDefs.
Require Import BA.FinTypes.
Require Import BA.External.
Require Import Seqs.
Require Import BasicDefs.
Require Import BA.FinTypes.
Some Utilities
Finite type {n|n<=k}
This is not the most beautiest code since it is obvious that this is a finite type
Construct the list of all numbers <= k
Definition le_k k := fun n => n <= k.
Instance dec_le_k k n : dec ( le_k k n). Proof. auto. Defined.
Definition Le_K k := {n | (pure (le_k k)) n}.
Fixpoint all_le_k k : list nat := match k with
| 0 => [0]
| S k => (S k) :: (all_le_k k) end.
Instance dec_pure_le_k k n : dec (pure (le_k k) n).
Proof.
decide (le_k k n) as[D|D].
- left. now apply pure_equiv.
- right. intros L. apply D. now apply pure_equiv in L.
Defined.
Hint Resolve dec_pure_le_k.
Lemma pure_le_k_if k n : n <= k -> pure (le_k k) n.
Proof.
intros L.
now rewrite <-pure_equiv.
Qed.
Construct the list of all numbers <= k including the proof
Definition all_Le_K k n := (fix f (L: list nat) := match L with
| [] => []
| n::L => match (decision (pure (le_k k) n)) with
| left D => (exist (pure (le_k k)) n D) :: f L
| right D => f L
end end) (all_le_k n).
Proof completeness and dupfreeness to assert that this list contains all
elements of this type exactely once
Lemma in_all_le_k_iff k n: n<= k <-> n el all_le_k k.
Proof.
induction k.
- split.
+ intros L. simpl. left. omega.
+ intros [E|E]. omega. contradiction E.
- split.
+ intros L. decide (n = S k).
* rewrite e. simpl. now left.
* simpl. right. apply IHk. omega.
+ intros E. decide (n = S k).
* omega.
* enough (n <= k). omega.
apply IHk. destruct E as [E|E].
-- apply IHk. omega.
-- assumption.
Qed.
Lemma dup_free_all_le_k k: dupfree (all_le_k k).
Proof.
induction k.
- simpl. constructor.
+ auto.
+ constructor.
- simpl. constructor.
+ intros E. apply in_all_le_k_iff in E. omega.
+ assumption.
Qed.
Lemma in_all_Le_K_if k (x : Le_K k): x el all_Le_K k k.
Proof.
unfold all_Le_K.
destruct x as [n L].
pose (L' := L).
rewrite <-pure_equiv in L'.
pose (Q:= in_all_le_k_iff k n).
destruct Q. specialize (H L').
induction (all_le_k k).
- contradiction H.
- destruct H.
+ rewrite H.
decide (pure (le_k k) n).
* simpl. left.
f_equal. apply pure_eq.
* exfalso. apply n0. now apply pure_le_k_if.
+ decide (pure (le_k k) a).
* simpl. right. apply IHl; auto.
* apply IHl; auto.
Qed.
Lemma in_all_Le_K_if2 k x : x el all_Le_K k k -> match x with exist _ x L => x <= k end.
Proof.
destruct x. intros _. change ((le_k k) x). rewrite pure_equiv. apply p.
Qed.
Lemma in_all_Le_K_ifLess k k' x :k <= k'-> x el all_Le_K k' k -> match x with exist _ x _ => x <= k end.
Proof.
unfold all_Le_K.
intros L.
induction k.
- simpl. destruct (pure_equiv 0). destruct x. intros [E|E].
+ enough (x = 0). omega.
congruence.
+ contradiction E.
- simpl. decide (pure (le_k k') (S k)) as [D|D].
+ simpl. intros [E|E].
* destruct x. enough (x = S k). omega. congruence.
* destruct x. enough (x <= k). omega.
apply IHk; auto. omega.
+ exfalso. apply D. apply pure_le_k_if. omega.
Qed.
Lemma dup_free_all_Le_K k n : n <= k -> dupfree (all_Le_K k n).
Proof.
unfold all_Le_K. revert k.
induction n; intros k L.
- simpl. constructor.
+ auto.
+ constructor.
- simpl. decide (pure (le_k k) (S n)).
+ constructor.
* intros E. apply in_all_Le_K_ifLess in E. omega. omega.
* apply IHn. omega.
+ apply IHn. omega.
Qed.
Section DeclareFinType.
Variable (k:nat).
Instance LE_K_eq_dec : eq_dec (Le_K k).
Proof.
intros [n1 p1] [n2 p2].
decide (n1 = n2).
- left. destruct e. f_equal. now apply pure_eq.
- right. intros L. apply n.
congruence.
Defined.
Canonical Structure EqLe_K := EqType (Le_K k).
Lemma Le_K_enum_ok (x : EqLe_K ) : count (X:= EqLe_K ) (all_Le_K k k) x =1.
Proof.
apply dupfreeCount.
- apply dup_free_all_Le_K. omega.
- apply in_all_Le_K_if.
Qed.
Instance finTypeC_Le_K : finTypeC EqLe_K.
Proof.
econstructor. apply Le_K_enum_ok.
Defined.
Canonical Structure finType_Le_K : finType := FinType EqLe_K.
End DeclareFinType.
All numbers n <= k can be converted to this type
Lemma create_Le_K n k (L: n <= k) : Le_K k.
Proof.
exists n.
apply pure_equiv. unfold le_k. exact L.
Defined.
Lemma all_Le_K_length_all_le_k n k : n<= k -> length (all_Le_K k n) = S n.
Proof.
unfold all_Le_K. revert k.
induction n; intros k L.
- simpl. reflexivity.
- simpl. destruct decision as [D|D].
+ simpl. f_equal. apply IHn. omega.
+ exfalso. apply D. now rewrite <-pure_equiv.
Qed.
Lemma card_finTypeC_Le_K k : length(enum (finTypeC := finTypeC_Le_K k )) = S k.
Proof.
unfold finType_Le_K. simpl.
now apply all_Le_K_length_all_le_k.
Qed.
Lemma card_finType_Le_K k : Cardinality( finType_Le_K k ) = S k.
Proof.
unfold Cardinality. apply card_finTypeC_Le_K.
Qed.
Lemma bounded_type_exist k (P: (Le_K k) -> Prop) (decP: forall L, dec (P L)): dec( exists L, P L).
Proof.
- auto using finType_exists_dec.
Qed.
Lemma bounded_exist k (P:nat -> Prop) (decP: forall n, dec (P n)): dec(exists n, n <= k /\ P (n)).
Proof.
pose (P' := fun (n:Le_K k) => match n with exist _ n _ => P n end).
enough (dec (exists (n:Le_K k), P' n)) as H.
- destruct H as [H|H].
+ left. destruct H as [[n p] Pn].
exists n. split.
* change (le_k k n). rewrite pure_equiv. exact p.
* now simpl in Pn.
+ right. intros [n [L Pn]].
apply H. change (le_k k n) in L. rewrite pure_equiv in L.
exists (exist (pure (le_k k)) n L).
now simpl.
- apply bounded_type_exist. intros L. unfold P'. now destruct L.
Qed.
Lemma strict_bounded_exist k (P:nat -> Prop) (decP: forall n, dec (P n)): dec(exists n, n < k /\ P (n)).
Proof.
destruct k.
- right. intros [n [L _]]. omega.
- destruct (bounded_exist k decP) as [D|D].
+ left. destruct D as [ n [ L Q]]. exists n. split; oauto.
+ right. intros [n [L Q]]. apply D. exists n. split; oauto.
Qed.
End FirstKFinType.
Hint Resolve bounded_exist.
Hint Resolve strict_bounded_exist.
Instance dec_pure_le_k_public x y : dec (pure (le_k x) y).
Proof. apply dec_pure_le_k. Defined.
Hint Resolve dec_pure_le_k_public. (* The other does not work for some reasons even it is registered*)
Section ConvertFinTypeToSeq.
Context {m : nat}.
Context {X : finType}.
Lemma dummy : (finType_Le_K m).
Proof.
exists 0. apply pure_equiv. unfold le_k. omega.
Qed.
Definition to_seq (b:X^(finType_Le_K m)) := fun (n:nat) => match (decision (pure (le_k m) n) ) with
| left D => applyVect b (exist (pure (le_k m )) n D)
| right D => applyVect b dummy
end.
Definition to_bounded(r:Seq X): X^(finType_Le_K m) := vectorise (fun (n:(finType_Le_K m)) => match n with exist _ n _ => r n end).
Lemma to_bounded_unchanged (r:Seq X) n (L: n <= m ): applyVect (to_bounded r) (create_Le_K L) = r n.
Proof.
unfold to_bounded.
rewrite apply_vectorise_inverse.
now simpl.
Qed.
Lemma to_seq_unchanged (r:X^(finType_Le_K m)) n (L: n <= m ): to_seq r n = applyVect r (create_Le_K L).
Proof.
unfold to_seq.
destruct (decision (pure (le_k m) n)) as [D|D].
- f_equal. unfold create_Le_K.
f_equal. apply pure_eq.
- exfalso. apply D. now apply pure_equiv.
Qed.
Lemma bounded_unchanged (r:Seq X) n : n <=m-> to_seq (to_bounded r) n = r n.
Proof.
intros L.
rewrite (to_seq_unchanged (to_bounded r) L).
apply to_bounded_unchanged.
Qed.
End ConvertFinTypeToSeq.
Context {m : nat}.
Context {X : finType}.
Lemma dummy : (finType_Le_K m).
Proof.
exists 0. apply pure_equiv. unfold le_k. omega.
Qed.
Definition to_seq (b:X^(finType_Le_K m)) := fun (n:nat) => match (decision (pure (le_k m) n) ) with
| left D => applyVect b (exist (pure (le_k m )) n D)
| right D => applyVect b dummy
end.
Definition to_bounded(r:Seq X): X^(finType_Le_K m) := vectorise (fun (n:(finType_Le_K m)) => match n with exist _ n _ => r n end).
Lemma to_bounded_unchanged (r:Seq X) n (L: n <= m ): applyVect (to_bounded r) (create_Le_K L) = r n.
Proof.
unfold to_bounded.
rewrite apply_vectorise_inverse.
now simpl.
Qed.
Lemma to_seq_unchanged (r:X^(finType_Le_K m)) n (L: n <= m ): to_seq r n = applyVect r (create_Le_K L).
Proof.
unfold to_seq.
destruct (decision (pure (le_k m) n)) as [D|D].
- f_equal. unfold create_Le_K.
f_equal. apply pure_eq.
- exfalso. apply D. now apply pure_equiv.
Qed.
Lemma bounded_unchanged (r:Seq X) n : n <=m-> to_seq (to_bounded r) n = r n.
Proof.
intros L.
rewrite (to_seq_unchanged (to_bounded r) L).
apply to_bounded_unchanged.
Qed.
End ConvertFinTypeToSeq.
Lemma can_find_duplicate (X: finType) k (r: Seq X) : (Sigma n1 n2, n1 < n2 <= k /\ r n1 = r n2) + {k <= Cardinality X }.
Proof.
decide (k <= Cardinality X).
- now right.
- left.
assert (k > Cardinality X) as H by omega.
pose (f := fun (k : finType_Le_K k) => match k with exist _ k _ => r k end ).
pose (P := fun (n1 n2 : finType_Le_K k) => match n1, n2 with
(exist _ n1 _), (exist _ n2 _) => n1 < n2 <= k /\ r n1 = r n2 end).
assert (forall n1 n2, dec(P n1 n2)) as decP. { intros [n1 ?] [n2 ?]. simpl. auto. }
assert (forall n1, dec (exists (n2 : finType_Le_K k), P n1 n2)) as decP'. { auto using finType_exists_dec. }
assert (dec (exists (n1 n2 : finType_Le_K k), P n1 n2)) as D. { auto using finType_exists_dec. }
destruct D as[ D|D].
+ destruct (finType_cc decP') as [n1 p1]. { destruct D as [n1 p]. now exists n1. }
destruct (finType_cc (decP n1)) as [n2 p2]. { destruct p1 as [n2 p]. now exists n2. }
destruct n1 as [n1 ?]; destruct n2 as [n2 ?].
exists n1; exists n2.
now simpl in p2.
+ exfalso.
assert (injective f) as I. {
intros x y E.
decide (x = y).
- assumption.
- exfalso. apply D.
destruct x as [x' px] eqn:EX; destruct y as [y' py] eqn:EY.
decide (x' < y').
+ exists x; exists y. unfold P.
rewrite EX,EY. repeat split.
* assumption.
* change ((le_k k) y'). rewrite pure_equiv. apply py.
* now unfold f in E.
+ assert (y' <> x'). { intros Eq. apply n0. destruct Eq. f_equal. apply pure_eq. }
assert (y' < x') by omega.
exists y; exists x. unfold P.
rewrite EX,EY. repeat split.
* assumption.
* change ((le_k k) x'). rewrite pure_equiv. apply px.
* now unfold f in E.
}
pose (J := pidgeonHole_inj I).
rewrite card_finType_Le_K in J.
omega.
Qed.
Fixpoint max_of_nat_string w l:= match l with
| 0 => w 0
| S l => max (w (S l)) (max_of_nat_string w l) end.
Lemma max_of_nat_string_correct v l: forall n , n<=l -> (v n) <= max_of_nat_string v l.
Proof.
induction l; intros n L.
- now rewrite_eq (n = 0).
- simpl. decide (n = S l) as[D|D].
+ apply max_le_left. rewrite D. omega.
+ apply max_le_right. apply IHl. omega.
Qed.
Lemma list_eq (X: Type) (l1 l2: list X) : (forall n, nth_error l1 n= nth_error l2 n) -> l1 = l2.
Proof.
revert l2.
induction l1; intros l2 EE.
- specialize (EE 0). simpl in EE. now destruct l2.
- destruct l2.
+ now specialize (EE 0).
+ f_equal.
* specialize (EE 0). simpl in EE. congruence.
* apply IHl1.
intros n. specialize (EE (S n)). now simpl in EE.
Qed.
Proof.
revert l2.
induction l1; intros l2 EE.
- specialize (EE 0). simpl in EE. now destruct l2.
- destruct l2.
+ now specialize (EE 0).
+ f_equal.
* specialize (EE 0). simpl in EE. congruence.
* apply IHl1.
intros n. specialize (EE (S n)). now simpl in EE.
Qed.
Inductive safe (p : nat -> Prop) (n : nat) : Prop :=
| safeB : p n -> safe p n
| safeS : safe p (S n) -> safe p n.
Lemma safe_dclosed k n p : k <= n -> safe p n -> safe p k.
Proof.
intros A B. induction A as [|n A].
- exact B.
- apply IHA. right. exact B.
Qed.
Section First.
Variable p : nat -> Prop.
Variable p_dec : forall n, dec (p n).
Fixpoint first (n : nat) (A : safe p n) : {k | p k} :=
match p_dec n with
| left B => exist p n B
| right B => first match A with
| safeB C => match B C with end
| safeS A' => A'
end
end.
Lemma cc_nat : (exists x, p x) -> {x | p x}.
Proof.
intros A. apply first with (n:=0).
destruct A as [n A].
apply safe_dclosed with (n:=n). omega. left. exact A.
Qed.
End First.