Require Import PostTheorem.external.FOL.Syntax.Facts.
Require Export PostTheorem.external.FOL.Semantics.Tarski.FullCore.
Require Import List Vector Lia.
Import ListNotations.
Local Set Implicit Arguments.
Local Unset Strict Implicit.
Set Default Proof Using "Type".
Local Notation vec := Vector.t.
Tarski Semantics
Section Tarski.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Section Substs.
Variable D : Type.
Variable I : interp D.
Lemma eval_ext rho xi t :
(forall x, rho x = xi x) -> eval rho t = eval xi t.
Proof.
intros H. induction t; cbn.
- now apply H.
- f_equal. apply map_ext_in. now apply IH.
Qed.
Lemma eval_comp rho xi t :
eval rho (subst_term xi t) = eval (xi >> eval rho) t.
Proof.
induction t; cbn.
- reflexivity.
- f_equal. rewrite map_map. apply map_ext_in, IH.
Qed.
Lemma sat_ext {ff : falsity_flag} rho xi phi :
(forall x, rho x = xi x) -> rho ⊨ phi <-> xi ⊨ phi.
Proof.
induction phi as [ | b P v | | ] in rho, xi |- *; cbn; intros H.
- reflexivity.
- erewrite map_ext; try reflexivity. intros t. now apply eval_ext.
- specialize (IHphi1 rho xi). specialize (IHphi2 rho xi). destruct b0; intuition.
- destruct q.
+ split; intros H' d; eapply IHphi; try apply (H' d). 1,2: intros []; cbn; intuition.
+ split; intros [d H']; exists d; eapply IHphi; try apply H'. 1,2: intros []; cbn; intuition.
Qed.
Lemma sat_ext' {ff : falsity_flag} rho xi phi :
(forall x, rho x = xi x) -> rho ⊨ phi -> xi ⊨ phi.
Proof.
intros Hext H. rewrite sat_ext. exact H.
intros x. now rewrite (Hext x).
Qed.
Lemma sat_comp {ff : falsity_flag} rho xi phi :
rho ⊨ (subst_form xi phi) <-> (xi >> eval rho) ⊨ phi.
Proof.
induction phi as [ | b P v | | ] in rho, xi |- *; cbn.
- reflexivity.
- erewrite map_map, map_ext; try reflexivity. intros t. apply eval_comp.
- specialize (IHphi1 rho xi). specialize (IHphi2 rho xi). destruct b0; intuition.
- destruct q.
+ setoid_rewrite IHphi. split; intros H d; eapply sat_ext. 2, 4: apply (H d).
all: intros []; cbn; trivial; now setoid_rewrite eval_comp.
+ setoid_rewrite IHphi. split; intros [d H]; exists d; eapply sat_ext. 2, 4: apply H.
all: intros []; cbn; trivial; now setoid_rewrite eval_comp.
Qed.
Lemma sat_subst {ff : falsity_flag} rho sigma phi :
(forall x, eval rho (sigma x) = rho x) -> rho ⊨ phi <-> rho ⊨ (subst_form sigma phi).
Proof.
intros H. rewrite sat_comp. apply sat_ext. intros x. now rewrite <- H.
Qed.
Lemma sat_single {ff : falsity_flag} (rho : nat -> D) (Phi : form) (t : term) :
(eval rho t .: rho) ⊨ Phi <-> rho ⊨ subst_form (t..) Phi.
Proof.
rewrite sat_comp. apply sat_ext. now intros [].
Qed.
Lemma impl_sat {ff : falsity_flag} A rho phi :
sat rho (A ==> phi) <-> ((forall psi, List.In psi A -> sat rho psi) -> sat rho phi).
Proof.
induction A; cbn; firstorder congruence.
Qed.
Lemma impl_sat' {ff : falsity_flag} A rho phi :
sat rho (A ==> phi) -> ((forall psi, List.In psi A -> sat rho psi) -> sat rho phi).
Proof.
eapply impl_sat.
Qed.
Fact subst_exist_sat2 {ff : falsity_flag} N :
forall rho phi, rho ⊨ (exist_times N phi) -> (exists sigma, sigma ⊨ phi).
Proof.
induction N.
- eauto.
- intros rho phi [? H]. now apply IHN in H.
Qed.
End Substs.
End Tarski.
Section TM.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Instance TM : interp unit :=
{| i_func := fun _ _ => tt; i_atom := fun _ _ => True; |}.
Fact TM_sat (rho : nat -> unit) (phi : form falsity_off) :
rho ⊨ phi.
Proof.
revert rho. remember falsity_off as ff. induction phi; cbn; trivial.
- discriminate.
- destruct b0; auto.
- destruct q; firstorder. exact tt.
Qed.
Fact TM_sat_decidable {ff} (rho : nat -> unit) (phi : form ff) :
rho ⊨ phi \/ ~(rho ⊨ phi).
Proof.
revert rho. induction phi as [|? ? ?|ff [| |] phi IHphi psi IHpsi|ff [|] phi IHphi]; cbn; intros rho; eauto; try tauto.
- destruct (IHphi rho), (IHpsi rho); tauto.
- destruct (IHphi rho), (IHpsi rho); tauto.
- destruct (IHphi rho), (IHpsi rho); tauto.
- destruct (IHphi (tt .: rho)).
+ left; now intros [].
+ right; intros Hcc. apply H, Hcc.
- destruct (IHphi (tt .: rho)).
+ left; now exists tt.
+ right; now intros [[] Hx].
Qed.
End TM.