Lvc.Constr.CSet
Require Export Setoid Coq.Classes.Morphisms Omega.
Require Export Sets SetInterface SetConstructs SetProperties.
Require Export EqDec Computable Util Drop.
Require Export CSetTac CSetBasic CSetCases CSetGet CSetComputable CSetDisjoint CSetNotation.
Require Export ElemEq.
Set Implicit Arguments.
Remove Hints trans_eq_bool.
Lemma minus_de_morgan X `{OrderedType X} x s t
: (x \In s ∧ (x \In t → False) → False)
↔ ((x \In s → False) ∨ (x \In t)).
Proof.
split; intros; dcr.
- decide (x ∈ s); decide (x ∈ t); eauto.
- intuition.
Qed.
Lemma in_dneg X `{OrderedType X} M x
: x ∈ M ↔ ¬x ∉ M.
Proof.
split; repeat intro; eauto.
decide (x ∈ M); eauto.
exfalso; eauto.
Qed.
Lemma in_dneg' X `{OrderedType X} M x
: x ∈ M ↔ ((x ∈ M → False )->False).
Proof.
split; repeat intro; eauto.
decide (x ∈ M); eauto.
exfalso; eauto.
Qed.
Smpl Add match goal with
| [ |- context [(_ \In _ → False) → False] ] ⇒
setoid_rewrite <- in_dneg'
| [ |- context [(_ \In _ → False) → False] ] ⇒
setoid_rewrite <- in_dneg'
| [ |- context [(_ ∉ _) → False] ] ⇒
setoid_rewrite <- in_dneg
end : cset.
Hint Resolve incl_empty minus_incl incl_right incl_left : auto.
Definition pe X `{OrderedType X} := prod_eq (@Equal X _ _) (@Equal X _ _).
Instance pe_morphism X `{OrderedType X}
: Proper (Equal ==> Equal ==> (@pe X _)) pair.
Proof.
unfold Proper, respectful.
intros. econstructor; eauto.
Qed.
Instance pe_refl X `{OrderedType X} : Reflexive (@pe _ _).
Proof.
hnf; intros. destruct x; econstructor; reflexivity.
Qed.
Instance pe_sym X `{OrderedType X} : Symmetric (@pe _ _).
Proof.
hnf; intros. inv H0; econstructor; eauto.
+ rewrite H1; eauto; reflexivity.
+ rewrite H2; eauto; reflexivity.
Qed.
Instance pe_trans X `{OrderedType X} : Transitive (@pe _ _).
Proof.
hnf; intros ? ? ? B C.
eapply Equivalence_Transitive; eauto using Equal_ST.
Qed.
Ltac pe_rewrite :=
repeat
(match goal with
| [ H : pe ?an _, H' : context [?an] |- _ ] ⇒
setoid_rewrite H in H'; simpl in H'
| [ H : pe ?an _ |- context [?an] ] ⇒
setoid_rewrite H; simpl
end).
Instance Subset_morphism_2 X `{OrderedType X}
: Proper (flip Subset ==> Subset ==> impl) (Subset).
Proof.
unfold Proper, respectful, impl; intros.
firstorder.
Qed.
Instance Subset_morphism_3 X `{OrderedType X}
: Proper (Subset ==> flip Subset ==> flip impl) (Subset).
Proof.
unfold Proper, respectful, impl; intros.
firstorder.
Qed.
Lemma minus_single_singleton X `{OrderedType X} (s : set X) (x:X)
: s \ singleton x [=] s \ {x; {}}.
Proof.
cset_tac; intuition.
Qed.
Lemma minus_single_singleton' X `{OrderedType X} (s : set X) (x:X)
: s \ singleton x ⊆ s \ {x; {}}.
Proof.
cset_tac; intuition.
Qed.
Lemma minus_single_singleton'' X `{OrderedType X} (s : set X) (x:X)
: s \ {x; {}} ⊆ s \ singleton x.
Proof.
cset_tac; intuition.
Qed.
Lemma fresh_of_list {X} `{OrderedType X} (L:list X) (y:X)
: Util.fresh y L → y ∉ of_list L.
Proof.
general induction L; simpl in ×. intro; cset_tac; eauto.
intro. cset_tac'; intuition.
eapply IHL; eauto. intro. eapply H0. constructor 2. eauto.
Qed.
Hint Extern 20 (?s \ {?x; {}} ⊆ ?s \ singleton ?x) ⇒ eapply minus_single_singleton''.
Hint Extern 20 (?s \ singleton ?x ⊆ ?s \ {?x; {}}) ⇒ eapply minus_single_singleton'.
Hint Extern 20 (?s \ {?x; {}} [=] ?s \ singleton ?x) ⇒ rewrite minus_single_singleton; reflexivity.
Hint Extern 20 (?s \ singleton ?x [=] ?s \ {?x; {}}) ⇒ rewrite minus_single_singleton; reflexivity.
Hint Extern 20 (Subset (?a \ _) ?a) ⇒ eapply minus_incl.
Hint Extern 20 (Subset (?a \ _) ?a') ⇒ progress (first [ has_evar a | has_evar a' | eapply minus_incl ]).
Hint Extern 20 (pe ?a ?a) ⇒ reflexivity.
Hint Extern 10 (Subset ?a (_ ∪ ?a)) ⇒ eapply incl_right.
Instance diff_proper_impl X `{OrderedType X}
: Proper (flip Subset ==> Subset ==> flip Subset) diff.
Proof.
unfold Proper, respectful, flip; intros.
cset_tac; intuition.
Qed.
Definition max_set {X} `{OrderedType X} (a:set X) (b:set X) :=
if [SetInterface.cardinal a < SetInterface.cardinal b] then
b
else
a.
Lemma cardinal_difference {X} `{OrderedType X} (s t: set X)
: SetInterface.cardinal (s \ t) ≤ SetInterface.cardinal s.
Proof.
erewrite <- (diff_inter_cardinal s t).
omega.
Qed.
Lemma cardinal_difference' {X} `{OrderedType X} (s t: set X)
: t ⊆ s
→ SetInterface.cardinal (s \ t) = SetInterface.cardinal s - SetInterface.cardinal t.
Proof.
intros.
erewrite <- (diff_inter_cardinal s t).
assert (s ∩ t [=] t). (cset_tac; intuition; eauto).
rewrite H1. omega.
Qed.
Instance cardinal_morph {X} `{OrderedType X}
: Proper (@Subset X _ _ ==> Peano.le) SetInterface.cardinal.
Proof.
unfold Proper, respectful; intros.
eapply subset_cardinal; eauto.
Qed.
Lemma NoDupA_decons A (R:A→A→Prop) x L
: NoDupA R (x::L)
→ NoDupA R L.
Proof.
inversion 1; eauto.
Qed.
Lemma NoDupA_decons_notin X `{OrderedType X} x L
: NoDupA _eq (x :: L)
→ x ∉ of_list L.
Proof.
inversion 1; subst. rewrite <- InA_in; eauto.
Qed.
Hint Resolve NoDupA_decons NoDupA_decons_notin.
Lemma cardinal_of_list_nodup {X} `{OrderedType X} (Z:list X)
: NoDupA _eq Z → SetInterface.cardinal (of_list Z) = length Z.
Proof.
general induction Z; simpl in × |- ×.
- eapply empty_cardinal.
- dcr. erewrite cardinal_2; eauto.
Qed.
Instance map_morph_Equal X `{OrderedType X} Y `{OrderedType Y}
(f : X → Y) `{Proper _ (_eq ==> _eq) f}
: Proper (Equal ==> Equal) (map f).
Proof.
unfold Proper, respectful; intros.
cset_tac.
Qed.
Instance map_morph_Subset X `{OrderedType X} Y `{OrderedType Y}
(f : X → Y) `{Proper _ (_eq ==> _eq) f}
: Proper (Subset ==> Subset) (map f).
Proof.
unfold Proper, respectful; intros.
cset_tac.
Qed.
Instance In_morph_Subset Y `{OrderedType Y}
: Proper (_eq ==> Subset ==> impl) In.
Proof.
unfold Proper, respectful, impl; intros.
eapply H1. rewrite <- H0; eauto.
Qed.
Instance In_morph_Equal Y `{OrderedType Y}
: Proper (_eq ==> Equal ==> iff) In.
Proof.
unfold Proper, respectful, impl; intros.
rewrite H0. cset_tac.
Qed.
Lemma cardinal_map {X} `{OrderedType X} {Y} `{OrderedType Y} (s: set X) (f:X → Y)
`{Proper _ (_eq ==> _eq) f}
: SetInterface.cardinal (SetConstructs.map f s) ≤ SetInterface.cardinal s.
Proof.
pattern s. eapply set_induction.
- intros. repeat rewrite SetProperties.cardinal_1; eauto.
hnf. intros; intro. eapply map_iff in H3. dcr.
eapply H2; eauto. eauto.
- intros.
erewrite (SetProperties.cardinal_2 H3 H4); eauto.
decide (f x ∈ SetConstructs.map f s0).
+ assert (SetConstructs.map f s0 [=] {f x; SetConstructs.map f s0}). {
cset_tac'. setoid_rewrite <- H10. eauto.
}
rewrite <- H2. rewrite H5.
assert (SetConstructs.map f s' ⊆ {f x; SetConstructs.map f s0}). {
hnf; intros. rewrite H5. eapply Add_Equal in H4.
rewrite H4 in H6.
revert H1 H6; clear; cset_tac'.
}
rewrite <- H6. omega.
+ rewrite <- H2. erewrite <- cardinal_2; eauto.
hnf; intros.
eapply Add_Equal in H4. rewrite H4 in *; clear H4.
split; intros; revert n; cset_tac'.
Qed.
Hint Extern 20 ( ?v ∈ singleton ?v ) ⇒ eapply singleton_iff; reflexivity.
Hint Extern 20 ( ?s ⊆ ?s ∪ _ ) ⇒ eapply incl_left.
Hint Extern 20 ( ?s ⊆ _ ∪ ?s ) ⇒ eapply incl_right.
Hint Extern 20 ⇒ match goal with
| [ H: ?x ∈ ?s, H': ?x ∉ ?s |- _ ] ⇒ exfalso; eapply H', H
| [ H: ?x === ?y, H': ?x =/= ?y |- _ ] ⇒ exfalso; eapply H', H
| [ H: ?x === ?y, H': ?x === ?y → False |- _ ]
⇒ exfalso; eapply H', H
| [ H: ?y === ?x, H': ?x =/= ?y |- _ ] ⇒
exfalso; eapply H'; symmetry; eapply H
| [ H: ?y === ?x, H': ?x === ?y → False |- _ ] ⇒
exfalso; eapply H'; symmetry; eapply H
| [ H: ?x =/= ?x |- _ ] ⇒ exfalso; eapply H; reflexivity
| [ H: ?x === ?x → False |- _ ] ⇒ exfalso; eapply H; reflexivity
end.
Hint Resolve in_add_left union_left union_right get_list_union_map : cset.
Hint Resolve prod_eq_intro : cset.
Hint Resolve incl_singleton: cset.
Hint Resolve incl_empty : cset.
Hint Resolve add_struct_eq union_struct_eq_1 union_struct_eq_2 : cset.
Hint Resolve union_incl_split : cset.
Hint Resolve not_in_minus : cset.
Hint Resolve not_incl_minus : cset.
Hint Resolve equal_minus_empty incl_minus_empty incl_minus_change incl_minus_union
incl_singleton union_incl_split : cset.
Hint Resolve incl_union_lr incl_union_left incl_union_right incl_add_right | 20 : cset.
Hint Resolve incl_empty : auto.
Lemma eq_union_lr (X : Type) (H : OrderedType X) (s s' t t' : set X)
: s [=] s' → t [=] t' → s ∪ t [=] s' ∪ t'.
Proof.
intros A B. rewrite A, B; eauto.
Qed.
Hint Immediate eq_union_lr : cset.
Lemma union_sym_simpl (X : Type) (H : OrderedType X) (s t : set X)
: s ∪ t [=] t ∪ s.
Proof.
eapply union_sym.
Qed.
Hint Resolve union_sym_simpl : cset.
Lemma incl_from_union_eq X `{OrderedType X} s t u
: t [=] s ∪ u
→ s ⊆ t.
Proof.
intro eq; rewrite eq. eauto.
Qed.
Hint Extern 0 ⇒
match goal with
| [ H1 : ?s ⊆ ?t, H2: ?t ⊆ ?u |- ?s ⊆ ?u] ⇒ eapply (Subset_trans H1 H2)
| [ H : ?t [=] ?s ∪ ?u |- ?s ⊆ ?t] ⇒ eapply (incl_from_union_eq H)
end : cset.
Lemma add_minus_comm X `{OrderedType X} x s t:
x ∉ t
→ {x; s} \ t [=] {x; s \ t}.
Proof.
cset_tac; intuition; eauto.
Qed.
Hint Resolve add_minus_comm : cset.
Create HintDb pe discriminated.
Ltac pe_rewrite_step :=
match goal with
| [ H : pe ?an _, H' : context [?an] |- _ ] ⇒
setoid_rewrite H in H'; simpl in H'
| [ H : pe ?an _ |- context [?an] ] ⇒
setoid_rewrite H; simpl
end.
Hint Extern 1 ⇒ pe_rewrite_step : pe.
Hint Extern 10 ⇒
match goal with
| [ |- pe (_, _) (_,_) ] ⇒ constructor
end : pe.
Lemma add_single_rm_single_incl X `{OrderedType X} x D
: {x; D} \ singleton x ⊆ D.
Proof.
cset_tac.
Qed.
Lemma minus_incl_add X `{OrderedType X} x (s t:set X)
: s \ singleton x ⊆ t
→ s [<=]{x; t}.
Proof.
cset_tac.
Qed.
Lemma incl_minus_single_not_in X `{OrderedType X} x D
: x ∉ D
→ D ⊆ D \ singleton x.
Proof.
cset_tac.
Qed.
Lemma minus_minus_minus_add X `{OrderedType X} s t x
: s \ t \ singleton x ⊆ s \ {x; t}.
Proof.
cset_tac.
Qed.
Hint Resolve minus_incl_add add_single_rm_single_incl
incl_minus_single_not_in minus_minus_minus_add equiv_minus_union
: cset.
Hint Resolve incl_meet_lr incl_meet_split : cset.
Definition lminus X `{OrderedType X} (s:set X) L := s \ of_list L.
Hint Extern 10 ⇒
match goal with
| [ H : ?a = ?b, H': ?c = ?b |- ?c = ?a ] ⇒ eapply (eq_trans H' (eq_sym H))
| [ H : ?b = ?a, H': ?b = ?c |- ?a = ?c ] ⇒ eapply (eq_trans (eq_sym H) H')
end : len.
Lemma incl_minus_both X `{OrderedType X} (s t u: set X)
: s \ u ⊆ t
→ u ⊆ t
→ s ⊆ t.
Proof.
intros. cset_tac'. decide (a ∈ u); eauto.
Qed.
Hint Extern 5 ⇒
match goal with
| [ H1 : ?s \ ?u ⊆ ?t, H2 : ?u ⊆ ?t |- ?s ⊆ ?t ] ⇒ eapply (incl_minus_both H1 H2)
end : cset.
Instance instance_option_eq_trans_R X {R: relation X} `{Transitive _ R}
: Transitive (option_eq R).
Proof.
hnf; intros. inv H0; inv H1.
+ econstructor.
+ econstructor; eauto.
Qed.
Instance instance_option_eq_refl_R X {R: relation X} `{Reflexive _ R}
: Reflexive (option_eq R).
Proof.
hnf; intros. destruct x.
+ econstructor; eauto.
+ econstructor.
Qed.
Instance instance_option_eq_sym_R X {R: relation X} `{Symmetric _ R}
: Symmetric (option_eq R).
Proof.
hnf; intros. inv H0.
+ econstructor.
+ econstructor; eauto.
Qed.
Instance prod_eq_fst_morphism X Y R R'
: Proper (@prod_eq X Y R R' ==> R) fst.
Proof.
unfold Proper, respectful; intros.
inversion H; simpl; eauto.
Qed.
Instance prod_eq_snd_morphism X Y R R'
: Proper (@prod_eq X Y R R' ==> R') snd.
Proof.
unfold Proper, respectful; intros.
inversion H; simpl; eauto.
Qed.
Lemma card_in_of_list X `{OrderedType X} ( l: list X) :
NoDupA _eq l → cardinal (of_list l) = length l.
Proof.
induction l; intro noDup; simpl; eauto.
- rewrite add_cardinal_2.
+ inversion_clear noDup. apply IHl in H1. rewrite H1. eauto.
+ inversion_clear noDup. intro no. apply <- InA_in in no. contradiction.
Qed.
Lemma add_cardinal X `{OrderedType X} (s : set X) x
: cardinal {x; s} ≤ S (cardinal s).
Proof.
decide (x ∈ s);
[apply add_cardinal_1 in i; rewrite i
|apply add_cardinal_2 in n; rewrite n]; cset_tac.
Qed.
Lemma elements_length X `{OrderedType X} (s : set X)
: length (elements s) = cardinal s.
Proof.
rewrite SetInterface.cardinal_1. reflexivity.
Qed.
Lemma elements_of_list_size X `{OrderedType X} ( l : list X) :
NoDupA _eq l → length (elements (of_list l)) = length l.
intro noDup. rewrite elements_length. apply card_in_of_list.
exact noDup.
Qed.
Lemma hd_in_list X `{OrderedType X} ( l : list X) x :
l ≠ nil → InA _eq (hd x l) l.
intro nonNil.
destruct l.
- isabsurd.
- constructor. simpl. eauto.
Qed.
Lemma hd_in_elements X `{OrderedType X} ( s : set X) x:
¬ s [=] ∅ → hd x (elements s) ∈ s.
intro nonEmpty.
apply elements_iff.
apply hd_in_list.
rewrite <- elements_nil_eset.
eauto with cset.
Qed.
Lemma list_eq_app X (R: relation X) (l1 l2 l1' l2' : list X)
: list_eq R l1 l1' → list_eq R l2 l2' → list_eq R (l1++l2) (l1'++l2').
Proof.
intros eq1 eq2. general induction eq1; eauto using @list_eq.
Qed.
Lemma cardinal_union_difference X `{OrderedType X} (s t u : set X)
: cardinal (s ∪ (t \ u)) ≤ cardinal (s ∪ t).
Proof.
assert (s ∪ (t \ u) ⊆ s ∪ t). { cset_tac. }
rewrite H0. eauto.
Qed.
Lemma cardinal_set_tl
(X : Type) `{OrderedType X}
(s : set X)
(n : nat)
:
cardinal (of_list (elements s)) = S n
→ cardinal (of_list (tl (elements s))) = n
.
Proof.
intro card_Sn.
remember (elements s) as L.
general induction L; simpl in *; eauto.
- inv card_Sn.
- rewrite add_cardinal_2 in card_Sn.
+ omega.
+ intro N.
assert (nn := (elements_3w s)).
rewrite <- HeqL in nn.
inversion_clear nn.
apply H0.
apply <- InA_in.
assumption.
Qed.
Lemma cardinal_tl
(X : Type) `{OrderedType X}
(n : nat)
(s : set X)
:
cardinal s = S n
→ cardinal (of_list (tl (elements s))) = n
.
Proof.
induction n; intros card_s.
- rewrite <- elements_length in card_s.
assert (tl (elements s) = nil) as tl_nil.
+ destruct (elements s).
× simpl. reflexivity.
× simpl in ×. assert (length l = 0). { omega. }
apply length_zero_iff_nil.
assumption.
+ rewrite tl_nil. simpl. apply empty_cardinal.
- apply cardinal_set_tl.
rewrite of_list_elements.
assumption.
Qed.
Lemma union_exclusive X `{OrderedType X} s t
: s ∪ t [=] s ∪ (t \ s).
Proof.
cset_tac.
Qed.
Lemma in_add_right X `{OrderedType X} s x x'
: x ∈ s → x ∈ {x'; s}.
Proof.
cset_tac; intuition.
Qed.
Hint Resolve in_add_right : cset.
Lemma set_decomp X `{OrderedType X} t s
: s [=] s ∩ t ∪ (s \ t).
Proof.
cset_tac.
Qed.
Hint Resolve <- map_iff : cset.
Hint Resolve → map_iff : cset.
Lemma map_spec_1 : ∀ (A : Type) (HA : OrderedType A) (B : Type) (HB : OrderedType B) (f : A → B),
Proper (_eq ==> _eq) f →
∀ (s : ⦃A⦄) (b : B), b ∈ map f s → (∃ a : A, a ∈ s ∧ b === f a).
intros; eauto with cset.
Qed.
Lemma map_spec_2 : ∀ (A : Type) (HA : OrderedType A) (B : Type) (HB : OrderedType B) (f : A → B),
Proper (_eq ==> _eq) f →
∀ (s : ⦃A⦄) (b : B), (∃ a : A, a ∈ s ∧ b === f a) → b ∈ map f s.
intros; eauto with cset.
Qed.
Hint Resolve map_spec_1 map_spec_2 : cset.
Lemma incl_minus_incl_union X `{OrderedType X} s t u
: s \ t ⊆ u
→ s ⊆ t ∪ u.
Proof.
intros. rewrite <- H0. cset_tac.
Qed.
Lemma incl_union_lr_eq X `{OrderedType X} s t u v
: s ∪ t [=] u
→ v ∪ t ⊆ v ∪ u.
Proof.
intros. rewrite <- H0. eauto with cset.
Qed.
Lemma incl_union_eq X `{OrderedType X} s t u
: s ∪ t [=] u
→ t ⊆ u.
Proof.
intros. rewrite <- H0. eauto with cset.
Qed.
Lemma incl_add_union_union X `{OrderedType X} s x t u
: s [=] {x; t}
→ {x; u} ∪ t ⊆ u ∪ s.
Proof.
intros. rewrite H0. cset_tac.
Qed.
Hint Immediate incl_minus_incl_union incl_union_lr_eq incl_union_eq incl_add_union_union : cset.
Lemma filter_add_in X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} x s
: p x → SetInterface.filter p {x;s} [=] {x; SetInterface.filter p s}.
Proof.
intros P; split; intros In; cset_tac.
Qed.
Lemma filter_add_notin X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} x s
: ¬ p x → SetInterface.filter p {x;s} [=] SetInterface.filter p s.
Proof.
intros P; split; intros In; cset_tac.
Qed.
Lemma filter_incl X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} s
: SetInterface.filter p s ⊆ s.
Proof.
hnf; intros. eapply zfilter_1; eauto.
Qed.
Lemma filter_add_incl X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} s x
: SetInterface.filter p {x; s} ⊆ {x; SetInterface.filter p s}.
Proof.
decide (p x).
- rewrite filter_add_in; eauto.
- rewrite filter_add_notin; eauto with cset.
Qed.
Lemma filter_difference X `{OrderedType X} (p:X→bool) `{Proper _ (_eq ==> eq) p} s t
: filter p (s \ t) [=] filter p s \ filter p t.
Proof.
cset_tac.
Qed.
Lemma subset_filter X `{OrderedType X} (p:X→bool) `{Proper _ (_eq ==> eq) p} (lv lv':set X)
: lv ⊆ lv'
→ filter p lv ⊆ filter p lv'.
Proof.
cset_tac.
Qed.
Lemma filter_singleton_in X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} x
: p x → filter p (singleton x) [=] singleton x.
Proof.
intros P; split; intros In; cset_tac.
Qed.
Lemma filter_singleton_notin X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} x
: ¬ p x → filter p (singleton x) [=] ∅.
Proof.
intros P; split; intros In; cset_tac.
Qed.
Lemma cardinal_filter X `{OrderedType X} (p:X→bool) `{Proper _ (_eq ==> eq) p} (s:set X)
: SetInterface.cardinal (filter p s) ≤ SetInterface.cardinal s.
Proof.
eapply subset_cardinal, filter_incl; eauto.
Qed.
Lemma decide_mem_1 X `{OrderedType X} x (s:set X)
: (x ∈ s → False) ∨ x ∈ s.
Proof.
decide (x ∈ s); eauto.
Qed.
Lemma decide_mem_2 X `{OrderedType X} x (s:set X)
: x ∈ s ∨ (x ∈ s → False).
Proof.
decide (x ∈ s); eauto.
Qed.
Hint Resolve decide_mem_1 decide_mem_2.
Ltac set_simpl :=
repeat
match goal with
| [ EQ : ?D [=] ?D', H : context [ ?D ] |- _ ]
⇒ is_var D; setoid_rewrite EQ in H
| [ EQ : ?D [=] ?D' |- context [ ?D ] ]
⇒ is_var D; setoid_rewrite EQ
| [ EQ : ?D [=] ?D' |- _ ] ⇒ is_var D; clear D EQ
| [ EQ : ?D' [=] ?D, H : context [ ?D ] |- _ ]
⇒ is_var D; setoid_rewrite <- EQ in H
| [ EQ : ?D' [=] ?D |- context [ ?D ] ]
⇒ is_var D; setoid_rewrite <- EQ
| [ EQ : ?D' [=] ?D |- _ ] ⇒ is_var D; clear D EQ
| [ I : context [ @union ?A ?H _ _ {} ] |- _ ]
⇒ rewrite (@empty_neutral_union_r A H) in I
| [ I : context [ @union ?A ?H _ {} _ ] |- _ ]
⇒ rewrite (@empty_neutral_union A H) in I
| [ |- context [ @union ?A ?H _ _ {} ] ] ⇒ rewrite (@empty_neutral_union_r A H)
| [ |- context [ @union ?A ?H _ {} _ ] ] ⇒ rewrite (@empty_neutral_union A H)
| [ I : context [ @diff ?A ?H _ _ {} ] |- _ ]
⇒ rewrite (@minus_empty A H) in I
| [ |- context [ @diff ?A ?H _ _ {} ] ]
⇒ rewrite (@minus_empty A H)
| [ H : {} ⊆ _ |- _ ] ⇒ clear H
end.
Instance InA_computable X `{OrderedType X} (L:list X) x
: Computable (InA _eq x L).
Proof.
hnf.
general induction L.
- right; inversion 1.
- decide (x === a); edestruct IHL; eauto.
right; inversion 1; eauto.
Qed.
Instance NoDupA_computable X `{OrderedType X} (L:list X)
: Computable (NoDupA _eq L).
Proof.
hnf. general induction L.
- eauto using NoDupA.
- decide (InA _eq a L); edestruct IHL; eauto.
right; inversion 1; eauto.
Qed.
Instance For_all_P_Equal X `{OrderedType X} (P:X→Prop) `{Proper _ (_eq ==> iff) P}
: Proper (Equal ==> iff) (For_all P).
Proof.
unfold Proper, respectful, For_all; split; intros; eapply H2; cset_tac.
Qed.
Instance For_all_P_Subset X `{OrderedType X} (P:X→Prop) `{Proper _ (_eq ==> iff) P}
: Proper (Subset ==> flip impl) (For_all P).
Proof.
unfold Proper, respectful, For_all, flip, impl; intros; eapply H2; eauto.
Qed.
Lemma of_list_drop_incl X `{OrderedType X} (n : nat) (L:list X)
: of_list (drop n L) ⊆ of_list L.
Proof.
general induction L; destruct n; simpl; eauto with cset.
rewrite drop_nil; eauto.
Qed.
Lemma of_list_drop_elements_incl X `{OrderedType X} (n : nat) (s : set X)
: of_list (drop n (elements s)) ⊆ s.
Proof.
rewrite of_list_drop_incl.
rewrite of_list_elements; eauto.
Qed.
Lemma filter_union X `{OrderedType X} (p:X→bool) s t `{Proper _ (_eq ==> eq) p}
: filter p (s ∪ t) [=] filter p s ∪ filter p t.
Proof.
cset_tac.
Qed.
Lemma nodup_to_list X `{OrderedType X} (s: set X)
: NoDupA _eq (to_list s).
Proof.
pose proof (elements_3w s). eauto.
Qed.
Lemma nodup_to_list_eq X `{UsualOrderedType X} (s: set X)
: NoDupA eq (to_list s).
Proof.
pose proof (elements_3w s). eauto.
Qed.
Lemma InA_In_eq X `{UsualOrderedType X} (L:list X) (x:X)
: InA eq x L ↔ InA _eq x L.
Proof.
split; eauto.
Qed.
Lemma union_incl_union_swap X `{OrderedType X} s t
: s ∪ t ⊆ t ∪ s.
Proof.
cset_tac.
Qed.
Lemma minus_incl_comm X `{OrderedType X} s t u
: (s \ t) \ u ⊆ (s \ u) \ t.
Proof.
cset_tac.
Qed.
Lemma minus_union_incl_minus_minus X `{OrderedType X} s t u
: (s \ (t ∪ u)) ⊆ (s \ t) \ u.
Proof.
cset_tac.
Qed.
Hint Resolve union_incl_union_swap minus_incl_comm minus_union_incl_minus_minus : cset.
Lemma card_inter_le_right
(X : Type)
`{OrderedType X}
(s t : ⦃X⦄)
:
cardinal (s ∩ t) ≤ cardinal t
.
Proof.
rewrite subset_cardinal with (s':=t);
[reflexivity | cset_tac].
Qed.
Lemma card_inter_le_left
(X : Type)
`{OrderedType X}
(s t : ⦃X⦄)
:
cardinal (s ∩ t) ≤ cardinal s
.
Proof.
rewrite subset_cardinal with (s':=s);
[reflexivity | cset_tac].
Qed.
Lemma union_cardinal X `{OrderedType X} s s'
: disj s s'
→ cardinal (s ∪ s') = cardinal s + cardinal s'.
Proof.
intros. eapply union_cardinal.
cset_tac.
Qed.
Lemma eq_empty X `{OrderedType X} (G:set X)
: G [=] {} ∪ G.
Proof.
cset_tac.
Qed.
Hint Resolve eq_empty : cset.
Smpl Add 30
match goal with
| [ I : context [ @union ?A ?H _ _ {} ] |- _ ]
⇒ rewrite (@empty_neutral_union_r A H) in I
| [ I : context [ @union ?A ?H _ {} _ ] |- _ ]
⇒ rewrite (@empty_neutral_union A H) in I
| [ |- context [ @union ?A ?H _ _ {} ] ] ⇒ rewrite (@empty_neutral_union_r A H)
| [ |- context [ @union ?A ?H _ {} _ ] ] ⇒ rewrite (@empty_neutral_union A H)
end : cset.
Lemma InA_In_eq_eq X `{OrderedType X} (L:list X) (x:X)
: InA eq x L → InA _eq x L.
Proof.
intros. general induction H0; eauto using InA.
Qed.
Lemma InA_eq_of_list X `{OrderedType X} x L
: InA eq x L → x ∈ of_list L.
Proof.
intros.
eapply InA_In_eq_eq in H0; eauto.
cset_tac.
Qed.
Smpl Add 40
match goal with
| [ H : InA eq ?x0 ?l |- _ ]
⇒ lazymatch goal with
| [ I : x0 ∈ of_list l |- _ ]
⇒ fail
| _ ⇒ pose proof (@InA_eq_of_list _ _ _ _ H)
end
end : cset.
Smpl Add
match goal with
| [ H : nil = snd ?a |- _ ] ⇒ destruct a; simpl snd in H
| [ H : _ :: _ = snd ?a |- _ ] ⇒ destruct a; simpl snd in H
end : inv_trivial.
Smpl Add
match goal with
| [ H : @_eq (@prod _ _) _ ?A ?B |- _ ] ⇒ inv_if_one_ctor H A B
| [ H : @_eq (@list _) _ ?A ?B |- _ ] ⇒ inv_if_one_ctor H A B
| [ H : @list_eq _ _ ?A ?B |- _ ] ⇒ inv_if_one_ctor H A B
end : inv_trivial.
Smpl Add 100
match goal with
| [ H : (_, _) = (_,_) |- _ ] ⇒ invc H
end : inv_trivial.
Lemma polyid
: ∀ A:Prop, (A → A) ↔ True.
Proof.
split; eauto.
Qed.
Smpl Add 49
match goal with
| [ H : context [?x → ?x] |- _ ] ⇒ rewrite polyid in H
| [ |- context [?x → ?x] ] ⇒ rewrite polyid
| [ H : context [?x → ?x] |- _ ] ⇒ setoid_rewrite polyid in H
| [ |- context [?x → ?x] ] ⇒ setoid_rewrite polyid
end : cset.
Smpl Add
match goal with
| [ |- @Equivalence.equiv
_
(@_eq _ (@SOT_as_OT _ (@eq nat) nat_OrderedType))
(@OT_Equivalence _ (@SOT_as_OT _ (@eq nat) nat_OrderedType))
?x ?y ] ⇒ hnf
| [ H : @Equivalence.equiv
_
(@_eq _ (@SOT_as_OT _ (@eq nat) nat_OrderedType))
(@OT_Equivalence _ (@SOT_as_OT _ (@eq nat) nat_OrderedType))
?x ?y |- _ ] ⇒ hnf in H; clear_trivial_eqs
end : cset.
Lemma disj_union_inv X `{OrderedType X} (x:X) (s t:set X)
: disj s t
→ x ∈ s ∪ t
→ (x ∈ s ∧ x ∉ t) ∨ (x ∈ t ∧ x ∉ s).
Proof.
cset_tac.
Qed.
Require Export Sets SetInterface SetConstructs SetProperties.
Require Export EqDec Computable Util Drop.
Require Export CSetTac CSetBasic CSetCases CSetGet CSetComputable CSetDisjoint CSetNotation.
Require Export ElemEq.
Set Implicit Arguments.
Remove Hints trans_eq_bool.
Lemma minus_de_morgan X `{OrderedType X} x s t
: (x \In s ∧ (x \In t → False) → False)
↔ ((x \In s → False) ∨ (x \In t)).
Proof.
split; intros; dcr.
- decide (x ∈ s); decide (x ∈ t); eauto.
- intuition.
Qed.
Lemma in_dneg X `{OrderedType X} M x
: x ∈ M ↔ ¬x ∉ M.
Proof.
split; repeat intro; eauto.
decide (x ∈ M); eauto.
exfalso; eauto.
Qed.
Lemma in_dneg' X `{OrderedType X} M x
: x ∈ M ↔ ((x ∈ M → False )->False).
Proof.
split; repeat intro; eauto.
decide (x ∈ M); eauto.
exfalso; eauto.
Qed.
Smpl Add match goal with
| [ |- context [(_ \In _ → False) → False] ] ⇒
setoid_rewrite <- in_dneg'
| [ |- context [(_ \In _ → False) → False] ] ⇒
setoid_rewrite <- in_dneg'
| [ |- context [(_ ∉ _) → False] ] ⇒
setoid_rewrite <- in_dneg
end : cset.
Hint Resolve incl_empty minus_incl incl_right incl_left : auto.
Definition pe X `{OrderedType X} := prod_eq (@Equal X _ _) (@Equal X _ _).
Instance pe_morphism X `{OrderedType X}
: Proper (Equal ==> Equal ==> (@pe X _)) pair.
Proof.
unfold Proper, respectful.
intros. econstructor; eauto.
Qed.
Instance pe_refl X `{OrderedType X} : Reflexive (@pe _ _).
Proof.
hnf; intros. destruct x; econstructor; reflexivity.
Qed.
Instance pe_sym X `{OrderedType X} : Symmetric (@pe _ _).
Proof.
hnf; intros. inv H0; econstructor; eauto.
+ rewrite H1; eauto; reflexivity.
+ rewrite H2; eauto; reflexivity.
Qed.
Instance pe_trans X `{OrderedType X} : Transitive (@pe _ _).
Proof.
hnf; intros ? ? ? B C.
eapply Equivalence_Transitive; eauto using Equal_ST.
Qed.
Ltac pe_rewrite :=
repeat
(match goal with
| [ H : pe ?an _, H' : context [?an] |- _ ] ⇒
setoid_rewrite H in H'; simpl in H'
| [ H : pe ?an _ |- context [?an] ] ⇒
setoid_rewrite H; simpl
end).
Instance Subset_morphism_2 X `{OrderedType X}
: Proper (flip Subset ==> Subset ==> impl) (Subset).
Proof.
unfold Proper, respectful, impl; intros.
firstorder.
Qed.
Instance Subset_morphism_3 X `{OrderedType X}
: Proper (Subset ==> flip Subset ==> flip impl) (Subset).
Proof.
unfold Proper, respectful, impl; intros.
firstorder.
Qed.
Lemma minus_single_singleton X `{OrderedType X} (s : set X) (x:X)
: s \ singleton x [=] s \ {x; {}}.
Proof.
cset_tac; intuition.
Qed.
Lemma minus_single_singleton' X `{OrderedType X} (s : set X) (x:X)
: s \ singleton x ⊆ s \ {x; {}}.
Proof.
cset_tac; intuition.
Qed.
Lemma minus_single_singleton'' X `{OrderedType X} (s : set X) (x:X)
: s \ {x; {}} ⊆ s \ singleton x.
Proof.
cset_tac; intuition.
Qed.
Lemma fresh_of_list {X} `{OrderedType X} (L:list X) (y:X)
: Util.fresh y L → y ∉ of_list L.
Proof.
general induction L; simpl in ×. intro; cset_tac; eauto.
intro. cset_tac'; intuition.
eapply IHL; eauto. intro. eapply H0. constructor 2. eauto.
Qed.
Hint Extern 20 (?s \ {?x; {}} ⊆ ?s \ singleton ?x) ⇒ eapply minus_single_singleton''.
Hint Extern 20 (?s \ singleton ?x ⊆ ?s \ {?x; {}}) ⇒ eapply minus_single_singleton'.
Hint Extern 20 (?s \ {?x; {}} [=] ?s \ singleton ?x) ⇒ rewrite minus_single_singleton; reflexivity.
Hint Extern 20 (?s \ singleton ?x [=] ?s \ {?x; {}}) ⇒ rewrite minus_single_singleton; reflexivity.
Hint Extern 20 (Subset (?a \ _) ?a) ⇒ eapply minus_incl.
Hint Extern 20 (Subset (?a \ _) ?a') ⇒ progress (first [ has_evar a | has_evar a' | eapply minus_incl ]).
Hint Extern 20 (pe ?a ?a) ⇒ reflexivity.
Hint Extern 10 (Subset ?a (_ ∪ ?a)) ⇒ eapply incl_right.
Instance diff_proper_impl X `{OrderedType X}
: Proper (flip Subset ==> Subset ==> flip Subset) diff.
Proof.
unfold Proper, respectful, flip; intros.
cset_tac; intuition.
Qed.
Definition max_set {X} `{OrderedType X} (a:set X) (b:set X) :=
if [SetInterface.cardinal a < SetInterface.cardinal b] then
b
else
a.
Lemma cardinal_difference {X} `{OrderedType X} (s t: set X)
: SetInterface.cardinal (s \ t) ≤ SetInterface.cardinal s.
Proof.
erewrite <- (diff_inter_cardinal s t).
omega.
Qed.
Lemma cardinal_difference' {X} `{OrderedType X} (s t: set X)
: t ⊆ s
→ SetInterface.cardinal (s \ t) = SetInterface.cardinal s - SetInterface.cardinal t.
Proof.
intros.
erewrite <- (diff_inter_cardinal s t).
assert (s ∩ t [=] t). (cset_tac; intuition; eauto).
rewrite H1. omega.
Qed.
Instance cardinal_morph {X} `{OrderedType X}
: Proper (@Subset X _ _ ==> Peano.le) SetInterface.cardinal.
Proof.
unfold Proper, respectful; intros.
eapply subset_cardinal; eauto.
Qed.
Lemma NoDupA_decons A (R:A→A→Prop) x L
: NoDupA R (x::L)
→ NoDupA R L.
Proof.
inversion 1; eauto.
Qed.
Lemma NoDupA_decons_notin X `{OrderedType X} x L
: NoDupA _eq (x :: L)
→ x ∉ of_list L.
Proof.
inversion 1; subst. rewrite <- InA_in; eauto.
Qed.
Hint Resolve NoDupA_decons NoDupA_decons_notin.
Lemma cardinal_of_list_nodup {X} `{OrderedType X} (Z:list X)
: NoDupA _eq Z → SetInterface.cardinal (of_list Z) = length Z.
Proof.
general induction Z; simpl in × |- ×.
- eapply empty_cardinal.
- dcr. erewrite cardinal_2; eauto.
Qed.
Instance map_morph_Equal X `{OrderedType X} Y `{OrderedType Y}
(f : X → Y) `{Proper _ (_eq ==> _eq) f}
: Proper (Equal ==> Equal) (map f).
Proof.
unfold Proper, respectful; intros.
cset_tac.
Qed.
Instance map_morph_Subset X `{OrderedType X} Y `{OrderedType Y}
(f : X → Y) `{Proper _ (_eq ==> _eq) f}
: Proper (Subset ==> Subset) (map f).
Proof.
unfold Proper, respectful; intros.
cset_tac.
Qed.
Instance In_morph_Subset Y `{OrderedType Y}
: Proper (_eq ==> Subset ==> impl) In.
Proof.
unfold Proper, respectful, impl; intros.
eapply H1. rewrite <- H0; eauto.
Qed.
Instance In_morph_Equal Y `{OrderedType Y}
: Proper (_eq ==> Equal ==> iff) In.
Proof.
unfold Proper, respectful, impl; intros.
rewrite H0. cset_tac.
Qed.
Lemma cardinal_map {X} `{OrderedType X} {Y} `{OrderedType Y} (s: set X) (f:X → Y)
`{Proper _ (_eq ==> _eq) f}
: SetInterface.cardinal (SetConstructs.map f s) ≤ SetInterface.cardinal s.
Proof.
pattern s. eapply set_induction.
- intros. repeat rewrite SetProperties.cardinal_1; eauto.
hnf. intros; intro. eapply map_iff in H3. dcr.
eapply H2; eauto. eauto.
- intros.
erewrite (SetProperties.cardinal_2 H3 H4); eauto.
decide (f x ∈ SetConstructs.map f s0).
+ assert (SetConstructs.map f s0 [=] {f x; SetConstructs.map f s0}). {
cset_tac'. setoid_rewrite <- H10. eauto.
}
rewrite <- H2. rewrite H5.
assert (SetConstructs.map f s' ⊆ {f x; SetConstructs.map f s0}). {
hnf; intros. rewrite H5. eapply Add_Equal in H4.
rewrite H4 in H6.
revert H1 H6; clear; cset_tac'.
}
rewrite <- H6. omega.
+ rewrite <- H2. erewrite <- cardinal_2; eauto.
hnf; intros.
eapply Add_Equal in H4. rewrite H4 in *; clear H4.
split; intros; revert n; cset_tac'.
Qed.
Hint Extern 20 ( ?v ∈ singleton ?v ) ⇒ eapply singleton_iff; reflexivity.
Hint Extern 20 ( ?s ⊆ ?s ∪ _ ) ⇒ eapply incl_left.
Hint Extern 20 ( ?s ⊆ _ ∪ ?s ) ⇒ eapply incl_right.
Hint Extern 20 ⇒ match goal with
| [ H: ?x ∈ ?s, H': ?x ∉ ?s |- _ ] ⇒ exfalso; eapply H', H
| [ H: ?x === ?y, H': ?x =/= ?y |- _ ] ⇒ exfalso; eapply H', H
| [ H: ?x === ?y, H': ?x === ?y → False |- _ ]
⇒ exfalso; eapply H', H
| [ H: ?y === ?x, H': ?x =/= ?y |- _ ] ⇒
exfalso; eapply H'; symmetry; eapply H
| [ H: ?y === ?x, H': ?x === ?y → False |- _ ] ⇒
exfalso; eapply H'; symmetry; eapply H
| [ H: ?x =/= ?x |- _ ] ⇒ exfalso; eapply H; reflexivity
| [ H: ?x === ?x → False |- _ ] ⇒ exfalso; eapply H; reflexivity
end.
Hint Resolve in_add_left union_left union_right get_list_union_map : cset.
Hint Resolve prod_eq_intro : cset.
Hint Resolve incl_singleton: cset.
Hint Resolve incl_empty : cset.
Hint Resolve add_struct_eq union_struct_eq_1 union_struct_eq_2 : cset.
Hint Resolve union_incl_split : cset.
Hint Resolve not_in_minus : cset.
Hint Resolve not_incl_minus : cset.
Hint Resolve equal_minus_empty incl_minus_empty incl_minus_change incl_minus_union
incl_singleton union_incl_split : cset.
Hint Resolve incl_union_lr incl_union_left incl_union_right incl_add_right | 20 : cset.
Hint Resolve incl_empty : auto.
Lemma eq_union_lr (X : Type) (H : OrderedType X) (s s' t t' : set X)
: s [=] s' → t [=] t' → s ∪ t [=] s' ∪ t'.
Proof.
intros A B. rewrite A, B; eauto.
Qed.
Hint Immediate eq_union_lr : cset.
Lemma union_sym_simpl (X : Type) (H : OrderedType X) (s t : set X)
: s ∪ t [=] t ∪ s.
Proof.
eapply union_sym.
Qed.
Hint Resolve union_sym_simpl : cset.
Lemma incl_from_union_eq X `{OrderedType X} s t u
: t [=] s ∪ u
→ s ⊆ t.
Proof.
intro eq; rewrite eq. eauto.
Qed.
Hint Extern 0 ⇒
match goal with
| [ H1 : ?s ⊆ ?t, H2: ?t ⊆ ?u |- ?s ⊆ ?u] ⇒ eapply (Subset_trans H1 H2)
| [ H : ?t [=] ?s ∪ ?u |- ?s ⊆ ?t] ⇒ eapply (incl_from_union_eq H)
end : cset.
Lemma add_minus_comm X `{OrderedType X} x s t:
x ∉ t
→ {x; s} \ t [=] {x; s \ t}.
Proof.
cset_tac; intuition; eauto.
Qed.
Hint Resolve add_minus_comm : cset.
Create HintDb pe discriminated.
Ltac pe_rewrite_step :=
match goal with
| [ H : pe ?an _, H' : context [?an] |- _ ] ⇒
setoid_rewrite H in H'; simpl in H'
| [ H : pe ?an _ |- context [?an] ] ⇒
setoid_rewrite H; simpl
end.
Hint Extern 1 ⇒ pe_rewrite_step : pe.
Hint Extern 10 ⇒
match goal with
| [ |- pe (_, _) (_,_) ] ⇒ constructor
end : pe.
Lemma add_single_rm_single_incl X `{OrderedType X} x D
: {x; D} \ singleton x ⊆ D.
Proof.
cset_tac.
Qed.
Lemma minus_incl_add X `{OrderedType X} x (s t:set X)
: s \ singleton x ⊆ t
→ s [<=]{x; t}.
Proof.
cset_tac.
Qed.
Lemma incl_minus_single_not_in X `{OrderedType X} x D
: x ∉ D
→ D ⊆ D \ singleton x.
Proof.
cset_tac.
Qed.
Lemma minus_minus_minus_add X `{OrderedType X} s t x
: s \ t \ singleton x ⊆ s \ {x; t}.
Proof.
cset_tac.
Qed.
Hint Resolve minus_incl_add add_single_rm_single_incl
incl_minus_single_not_in minus_minus_minus_add equiv_minus_union
: cset.
Hint Resolve incl_meet_lr incl_meet_split : cset.
Definition lminus X `{OrderedType X} (s:set X) L := s \ of_list L.
Hint Extern 10 ⇒
match goal with
| [ H : ?a = ?b, H': ?c = ?b |- ?c = ?a ] ⇒ eapply (eq_trans H' (eq_sym H))
| [ H : ?b = ?a, H': ?b = ?c |- ?a = ?c ] ⇒ eapply (eq_trans (eq_sym H) H')
end : len.
Lemma incl_minus_both X `{OrderedType X} (s t u: set X)
: s \ u ⊆ t
→ u ⊆ t
→ s ⊆ t.
Proof.
intros. cset_tac'. decide (a ∈ u); eauto.
Qed.
Hint Extern 5 ⇒
match goal with
| [ H1 : ?s \ ?u ⊆ ?t, H2 : ?u ⊆ ?t |- ?s ⊆ ?t ] ⇒ eapply (incl_minus_both H1 H2)
end : cset.
Instance instance_option_eq_trans_R X {R: relation X} `{Transitive _ R}
: Transitive (option_eq R).
Proof.
hnf; intros. inv H0; inv H1.
+ econstructor.
+ econstructor; eauto.
Qed.
Instance instance_option_eq_refl_R X {R: relation X} `{Reflexive _ R}
: Reflexive (option_eq R).
Proof.
hnf; intros. destruct x.
+ econstructor; eauto.
+ econstructor.
Qed.
Instance instance_option_eq_sym_R X {R: relation X} `{Symmetric _ R}
: Symmetric (option_eq R).
Proof.
hnf; intros. inv H0.
+ econstructor.
+ econstructor; eauto.
Qed.
Instance prod_eq_fst_morphism X Y R R'
: Proper (@prod_eq X Y R R' ==> R) fst.
Proof.
unfold Proper, respectful; intros.
inversion H; simpl; eauto.
Qed.
Instance prod_eq_snd_morphism X Y R R'
: Proper (@prod_eq X Y R R' ==> R') snd.
Proof.
unfold Proper, respectful; intros.
inversion H; simpl; eauto.
Qed.
Lemma card_in_of_list X `{OrderedType X} ( l: list X) :
NoDupA _eq l → cardinal (of_list l) = length l.
Proof.
induction l; intro noDup; simpl; eauto.
- rewrite add_cardinal_2.
+ inversion_clear noDup. apply IHl in H1. rewrite H1. eauto.
+ inversion_clear noDup. intro no. apply <- InA_in in no. contradiction.
Qed.
Lemma add_cardinal X `{OrderedType X} (s : set X) x
: cardinal {x; s} ≤ S (cardinal s).
Proof.
decide (x ∈ s);
[apply add_cardinal_1 in i; rewrite i
|apply add_cardinal_2 in n; rewrite n]; cset_tac.
Qed.
Lemma elements_length X `{OrderedType X} (s : set X)
: length (elements s) = cardinal s.
Proof.
rewrite SetInterface.cardinal_1. reflexivity.
Qed.
Lemma elements_of_list_size X `{OrderedType X} ( l : list X) :
NoDupA _eq l → length (elements (of_list l)) = length l.
intro noDup. rewrite elements_length. apply card_in_of_list.
exact noDup.
Qed.
Lemma hd_in_list X `{OrderedType X} ( l : list X) x :
l ≠ nil → InA _eq (hd x l) l.
intro nonNil.
destruct l.
- isabsurd.
- constructor. simpl. eauto.
Qed.
Lemma hd_in_elements X `{OrderedType X} ( s : set X) x:
¬ s [=] ∅ → hd x (elements s) ∈ s.
intro nonEmpty.
apply elements_iff.
apply hd_in_list.
rewrite <- elements_nil_eset.
eauto with cset.
Qed.
Lemma list_eq_app X (R: relation X) (l1 l2 l1' l2' : list X)
: list_eq R l1 l1' → list_eq R l2 l2' → list_eq R (l1++l2) (l1'++l2').
Proof.
intros eq1 eq2. general induction eq1; eauto using @list_eq.
Qed.
Lemma cardinal_union_difference X `{OrderedType X} (s t u : set X)
: cardinal (s ∪ (t \ u)) ≤ cardinal (s ∪ t).
Proof.
assert (s ∪ (t \ u) ⊆ s ∪ t). { cset_tac. }
rewrite H0. eauto.
Qed.
Lemma cardinal_set_tl
(X : Type) `{OrderedType X}
(s : set X)
(n : nat)
:
cardinal (of_list (elements s)) = S n
→ cardinal (of_list (tl (elements s))) = n
.
Proof.
intro card_Sn.
remember (elements s) as L.
general induction L; simpl in *; eauto.
- inv card_Sn.
- rewrite add_cardinal_2 in card_Sn.
+ omega.
+ intro N.
assert (nn := (elements_3w s)).
rewrite <- HeqL in nn.
inversion_clear nn.
apply H0.
apply <- InA_in.
assumption.
Qed.
Lemma cardinal_tl
(X : Type) `{OrderedType X}
(n : nat)
(s : set X)
:
cardinal s = S n
→ cardinal (of_list (tl (elements s))) = n
.
Proof.
induction n; intros card_s.
- rewrite <- elements_length in card_s.
assert (tl (elements s) = nil) as tl_nil.
+ destruct (elements s).
× simpl. reflexivity.
× simpl in ×. assert (length l = 0). { omega. }
apply length_zero_iff_nil.
assumption.
+ rewrite tl_nil. simpl. apply empty_cardinal.
- apply cardinal_set_tl.
rewrite of_list_elements.
assumption.
Qed.
Lemma union_exclusive X `{OrderedType X} s t
: s ∪ t [=] s ∪ (t \ s).
Proof.
cset_tac.
Qed.
Lemma in_add_right X `{OrderedType X} s x x'
: x ∈ s → x ∈ {x'; s}.
Proof.
cset_tac; intuition.
Qed.
Hint Resolve in_add_right : cset.
Lemma set_decomp X `{OrderedType X} t s
: s [=] s ∩ t ∪ (s \ t).
Proof.
cset_tac.
Qed.
Hint Resolve <- map_iff : cset.
Hint Resolve → map_iff : cset.
Lemma map_spec_1 : ∀ (A : Type) (HA : OrderedType A) (B : Type) (HB : OrderedType B) (f : A → B),
Proper (_eq ==> _eq) f →
∀ (s : ⦃A⦄) (b : B), b ∈ map f s → (∃ a : A, a ∈ s ∧ b === f a).
intros; eauto with cset.
Qed.
Lemma map_spec_2 : ∀ (A : Type) (HA : OrderedType A) (B : Type) (HB : OrderedType B) (f : A → B),
Proper (_eq ==> _eq) f →
∀ (s : ⦃A⦄) (b : B), (∃ a : A, a ∈ s ∧ b === f a) → b ∈ map f s.
intros; eauto with cset.
Qed.
Hint Resolve map_spec_1 map_spec_2 : cset.
Lemma incl_minus_incl_union X `{OrderedType X} s t u
: s \ t ⊆ u
→ s ⊆ t ∪ u.
Proof.
intros. rewrite <- H0. cset_tac.
Qed.
Lemma incl_union_lr_eq X `{OrderedType X} s t u v
: s ∪ t [=] u
→ v ∪ t ⊆ v ∪ u.
Proof.
intros. rewrite <- H0. eauto with cset.
Qed.
Lemma incl_union_eq X `{OrderedType X} s t u
: s ∪ t [=] u
→ t ⊆ u.
Proof.
intros. rewrite <- H0. eauto with cset.
Qed.
Lemma incl_add_union_union X `{OrderedType X} s x t u
: s [=] {x; t}
→ {x; u} ∪ t ⊆ u ∪ s.
Proof.
intros. rewrite H0. cset_tac.
Qed.
Hint Immediate incl_minus_incl_union incl_union_lr_eq incl_union_eq incl_add_union_union : cset.
Lemma filter_add_in X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} x s
: p x → SetInterface.filter p {x;s} [=] {x; SetInterface.filter p s}.
Proof.
intros P; split; intros In; cset_tac.
Qed.
Lemma filter_add_notin X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} x s
: ¬ p x → SetInterface.filter p {x;s} [=] SetInterface.filter p s.
Proof.
intros P; split; intros In; cset_tac.
Qed.
Lemma filter_incl X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} s
: SetInterface.filter p s ⊆ s.
Proof.
hnf; intros. eapply zfilter_1; eauto.
Qed.
Lemma filter_add_incl X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} s x
: SetInterface.filter p {x; s} ⊆ {x; SetInterface.filter p s}.
Proof.
decide (p x).
- rewrite filter_add_in; eauto.
- rewrite filter_add_notin; eauto with cset.
Qed.
Lemma filter_difference X `{OrderedType X} (p:X→bool) `{Proper _ (_eq ==> eq) p} s t
: filter p (s \ t) [=] filter p s \ filter p t.
Proof.
cset_tac.
Qed.
Lemma subset_filter X `{OrderedType X} (p:X→bool) `{Proper _ (_eq ==> eq) p} (lv lv':set X)
: lv ⊆ lv'
→ filter p lv ⊆ filter p lv'.
Proof.
cset_tac.
Qed.
Lemma filter_singleton_in X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} x
: p x → filter p (singleton x) [=] singleton x.
Proof.
intros P; split; intros In; cset_tac.
Qed.
Lemma filter_singleton_notin X `{OrderedType X} (p:X → bool) `{Proper _ (_eq ==> eq) p} x
: ¬ p x → filter p (singleton x) [=] ∅.
Proof.
intros P; split; intros In; cset_tac.
Qed.
Lemma cardinal_filter X `{OrderedType X} (p:X→bool) `{Proper _ (_eq ==> eq) p} (s:set X)
: SetInterface.cardinal (filter p s) ≤ SetInterface.cardinal s.
Proof.
eapply subset_cardinal, filter_incl; eauto.
Qed.
Lemma decide_mem_1 X `{OrderedType X} x (s:set X)
: (x ∈ s → False) ∨ x ∈ s.
Proof.
decide (x ∈ s); eauto.
Qed.
Lemma decide_mem_2 X `{OrderedType X} x (s:set X)
: x ∈ s ∨ (x ∈ s → False).
Proof.
decide (x ∈ s); eauto.
Qed.
Hint Resolve decide_mem_1 decide_mem_2.
Ltac set_simpl :=
repeat
match goal with
| [ EQ : ?D [=] ?D', H : context [ ?D ] |- _ ]
⇒ is_var D; setoid_rewrite EQ in H
| [ EQ : ?D [=] ?D' |- context [ ?D ] ]
⇒ is_var D; setoid_rewrite EQ
| [ EQ : ?D [=] ?D' |- _ ] ⇒ is_var D; clear D EQ
| [ EQ : ?D' [=] ?D, H : context [ ?D ] |- _ ]
⇒ is_var D; setoid_rewrite <- EQ in H
| [ EQ : ?D' [=] ?D |- context [ ?D ] ]
⇒ is_var D; setoid_rewrite <- EQ
| [ EQ : ?D' [=] ?D |- _ ] ⇒ is_var D; clear D EQ
| [ I : context [ @union ?A ?H _ _ {} ] |- _ ]
⇒ rewrite (@empty_neutral_union_r A H) in I
| [ I : context [ @union ?A ?H _ {} _ ] |- _ ]
⇒ rewrite (@empty_neutral_union A H) in I
| [ |- context [ @union ?A ?H _ _ {} ] ] ⇒ rewrite (@empty_neutral_union_r A H)
| [ |- context [ @union ?A ?H _ {} _ ] ] ⇒ rewrite (@empty_neutral_union A H)
| [ I : context [ @diff ?A ?H _ _ {} ] |- _ ]
⇒ rewrite (@minus_empty A H) in I
| [ |- context [ @diff ?A ?H _ _ {} ] ]
⇒ rewrite (@minus_empty A H)
| [ H : {} ⊆ _ |- _ ] ⇒ clear H
end.
Instance InA_computable X `{OrderedType X} (L:list X) x
: Computable (InA _eq x L).
Proof.
hnf.
general induction L.
- right; inversion 1.
- decide (x === a); edestruct IHL; eauto.
right; inversion 1; eauto.
Qed.
Instance NoDupA_computable X `{OrderedType X} (L:list X)
: Computable (NoDupA _eq L).
Proof.
hnf. general induction L.
- eauto using NoDupA.
- decide (InA _eq a L); edestruct IHL; eauto.
right; inversion 1; eauto.
Qed.
Instance For_all_P_Equal X `{OrderedType X} (P:X→Prop) `{Proper _ (_eq ==> iff) P}
: Proper (Equal ==> iff) (For_all P).
Proof.
unfold Proper, respectful, For_all; split; intros; eapply H2; cset_tac.
Qed.
Instance For_all_P_Subset X `{OrderedType X} (P:X→Prop) `{Proper _ (_eq ==> iff) P}
: Proper (Subset ==> flip impl) (For_all P).
Proof.
unfold Proper, respectful, For_all, flip, impl; intros; eapply H2; eauto.
Qed.
Lemma of_list_drop_incl X `{OrderedType X} (n : nat) (L:list X)
: of_list (drop n L) ⊆ of_list L.
Proof.
general induction L; destruct n; simpl; eauto with cset.
rewrite drop_nil; eauto.
Qed.
Lemma of_list_drop_elements_incl X `{OrderedType X} (n : nat) (s : set X)
: of_list (drop n (elements s)) ⊆ s.
Proof.
rewrite of_list_drop_incl.
rewrite of_list_elements; eauto.
Qed.
Lemma filter_union X `{OrderedType X} (p:X→bool) s t `{Proper _ (_eq ==> eq) p}
: filter p (s ∪ t) [=] filter p s ∪ filter p t.
Proof.
cset_tac.
Qed.
Lemma nodup_to_list X `{OrderedType X} (s: set X)
: NoDupA _eq (to_list s).
Proof.
pose proof (elements_3w s). eauto.
Qed.
Lemma nodup_to_list_eq X `{UsualOrderedType X} (s: set X)
: NoDupA eq (to_list s).
Proof.
pose proof (elements_3w s). eauto.
Qed.
Lemma InA_In_eq X `{UsualOrderedType X} (L:list X) (x:X)
: InA eq x L ↔ InA _eq x L.
Proof.
split; eauto.
Qed.
Lemma union_incl_union_swap X `{OrderedType X} s t
: s ∪ t ⊆ t ∪ s.
Proof.
cset_tac.
Qed.
Lemma minus_incl_comm X `{OrderedType X} s t u
: (s \ t) \ u ⊆ (s \ u) \ t.
Proof.
cset_tac.
Qed.
Lemma minus_union_incl_minus_minus X `{OrderedType X} s t u
: (s \ (t ∪ u)) ⊆ (s \ t) \ u.
Proof.
cset_tac.
Qed.
Hint Resolve union_incl_union_swap minus_incl_comm minus_union_incl_minus_minus : cset.
Lemma card_inter_le_right
(X : Type)
`{OrderedType X}
(s t : ⦃X⦄)
:
cardinal (s ∩ t) ≤ cardinal t
.
Proof.
rewrite subset_cardinal with (s':=t);
[reflexivity | cset_tac].
Qed.
Lemma card_inter_le_left
(X : Type)
`{OrderedType X}
(s t : ⦃X⦄)
:
cardinal (s ∩ t) ≤ cardinal s
.
Proof.
rewrite subset_cardinal with (s':=s);
[reflexivity | cset_tac].
Qed.
Lemma union_cardinal X `{OrderedType X} s s'
: disj s s'
→ cardinal (s ∪ s') = cardinal s + cardinal s'.
Proof.
intros. eapply union_cardinal.
cset_tac.
Qed.
Lemma eq_empty X `{OrderedType X} (G:set X)
: G [=] {} ∪ G.
Proof.
cset_tac.
Qed.
Hint Resolve eq_empty : cset.
Smpl Add 30
match goal with
| [ I : context [ @union ?A ?H _ _ {} ] |- _ ]
⇒ rewrite (@empty_neutral_union_r A H) in I
| [ I : context [ @union ?A ?H _ {} _ ] |- _ ]
⇒ rewrite (@empty_neutral_union A H) in I
| [ |- context [ @union ?A ?H _ _ {} ] ] ⇒ rewrite (@empty_neutral_union_r A H)
| [ |- context [ @union ?A ?H _ {} _ ] ] ⇒ rewrite (@empty_neutral_union A H)
end : cset.
Lemma InA_In_eq_eq X `{OrderedType X} (L:list X) (x:X)
: InA eq x L → InA _eq x L.
Proof.
intros. general induction H0; eauto using InA.
Qed.
Lemma InA_eq_of_list X `{OrderedType X} x L
: InA eq x L → x ∈ of_list L.
Proof.
intros.
eapply InA_In_eq_eq in H0; eauto.
cset_tac.
Qed.
Smpl Add 40
match goal with
| [ H : InA eq ?x0 ?l |- _ ]
⇒ lazymatch goal with
| [ I : x0 ∈ of_list l |- _ ]
⇒ fail
| _ ⇒ pose proof (@InA_eq_of_list _ _ _ _ H)
end
end : cset.
Smpl Add
match goal with
| [ H : nil = snd ?a |- _ ] ⇒ destruct a; simpl snd in H
| [ H : _ :: _ = snd ?a |- _ ] ⇒ destruct a; simpl snd in H
end : inv_trivial.
Smpl Add
match goal with
| [ H : @_eq (@prod _ _) _ ?A ?B |- _ ] ⇒ inv_if_one_ctor H A B
| [ H : @_eq (@list _) _ ?A ?B |- _ ] ⇒ inv_if_one_ctor H A B
| [ H : @list_eq _ _ ?A ?B |- _ ] ⇒ inv_if_one_ctor H A B
end : inv_trivial.
Smpl Add 100
match goal with
| [ H : (_, _) = (_,_) |- _ ] ⇒ invc H
end : inv_trivial.
Lemma polyid
: ∀ A:Prop, (A → A) ↔ True.
Proof.
split; eauto.
Qed.
Smpl Add 49
match goal with
| [ H : context [?x → ?x] |- _ ] ⇒ rewrite polyid in H
| [ |- context [?x → ?x] ] ⇒ rewrite polyid
| [ H : context [?x → ?x] |- _ ] ⇒ setoid_rewrite polyid in H
| [ |- context [?x → ?x] ] ⇒ setoid_rewrite polyid
end : cset.
Smpl Add
match goal with
| [ |- @Equivalence.equiv
_
(@_eq _ (@SOT_as_OT _ (@eq nat) nat_OrderedType))
(@OT_Equivalence _ (@SOT_as_OT _ (@eq nat) nat_OrderedType))
?x ?y ] ⇒ hnf
| [ H : @Equivalence.equiv
_
(@_eq _ (@SOT_as_OT _ (@eq nat) nat_OrderedType))
(@OT_Equivalence _ (@SOT_as_OT _ (@eq nat) nat_OrderedType))
?x ?y |- _ ] ⇒ hnf in H; clear_trivial_eqs
end : cset.
Lemma disj_union_inv X `{OrderedType X} (x:X) (s t:set X)
: disj s t
→ x ∈ s ∪ t
→ (x ∈ s ∧ x ∉ t) ∨ (x ∈ t ∧ x ∉ s).
Proof.
cset_tac.
Qed.