Lvc.Infra.Get
Require Import Arith Coq.Lists.List Setoid Coq.Lists.SetoidList Omega.
Require Import Infra.Option EqDec AutoIndTac Util LengthEq.
Set Implicit Arguments.
Require Import Infra.Option EqDec AutoIndTac Util LengthEq.
Set Implicit Arguments.
Inductive getT (X:Type) : list X → nat → X → Type :=
| getTLB xl x : getT (x::xl) 0 x
| getTLS n xl x x' : getT xl n x → getT (x'::xl) (S n) x.
Inductive get (X:Type) : list X → nat → X → Prop :=
| getLB xl x : get (x::xl) 0 x
| getLS n xl x x' : get xl n x → get (x'::xl) (S n) x.
Ltac isabsurd :=
try match goal with
| [ H : ?x = None, H' : ?x = Some _ |- _ ] ⇒ exfalso; rewrite H in H'; inv H'
| [ H : get ?L ?n _, H' : (∀ _, get ?L ?n _ → False) |- _ ] ⇒ exfalso; eapply H'; eapply H
| [ H : get nil _ _ |- _ ] ⇒ exfalso; inv H
| _ ⇒
try now (hnf; intros;
match goal with
[ H : _ |- _ ] ⇒ exfalso; inversion H; try subst; simpl in *; try congruence
end)
end.
Smpl Add 100
match goal with
| [ H : get ?L ?n _, H' : (∀ _, get ?L ?n _ → False) |- _ ] ⇒
exfalso; eapply H'; eapply H
| [ H : get nil _ _ |- _ ] ⇒ exfalso; inv H
| [ H : get _ 0 _ |- _ ] ⇒ invc H
| [ H : get (_ :: _) (S _) _ |- _ ] ⇒ invc H
end : inv_trivial.
Get is informative anyway.
Lemma get_getT X (x:X) n L
: get L n x → getT L n x.
Proof.
revert n x L. fix 1; intros.
destruct n, L. exfalso. inv H.
assert (x0 = x). inv H; eauto. subst. econstructor.
exfalso. inv H.
econstructor. eapply get_getT. inv H. eauto.
Qed.
Lemma getT_get X (x:X) n L
: getT L n x → get L n x.
Proof.
intros. general induction X0; eauto using get.
Qed.
Lemma get_S_inv X L n (x y:X)
: get (y :: L) (S n) x
→ get L n x.
Proof.
intros; clear_trivial_eqs; eauto.
Qed.
Hint Immediate get_S_inv.
Lemma get_functional X (xl:list X) n (x x':X) :
get xl n x → get xl n x' → x = x'.
Proof.
induction 1; inversion 1; subst; eauto.
Qed.
Lemma get_shift X (L:list X) k L1 blk :
get L k blk → get (L1 ++ L) (length L1+k) blk.
Proof.
intros. induction L1; simpl; eauto using get.
Qed.
Lemma shift_get X (L:list X) k L1 blk :
get (L1 ++ L) (length L1+k) blk → get L k blk.
Proof.
intros. induction L1; simpl; eauto using get.
Qed.
Lemma get_app X (L L':list X) k x
: get L k x → get (L ++ L') k x.
Proof.
revert k.
general induction L.
intros; simpl; inv H; eauto using get.
Qed.
Lemma get_nth_default {X:Type} L n m (default:X):
get L n m → nth n L default = m.
induction 1; auto. Qed.
Lemma get_length {X:Type} L n (s:X)
(getl : get L n s) :
n < length L.
induction getl; simpl; omega.
Qed.
Lemma get_nth X L n m (d:X) :
get L n m → nth n L d = m.
induction 1; auto. Qed.
Lemma nth_default_nil X (v : X) x : nth_default v nil x = v.
Proof.
destruct x; reflexivity.
Qed.
Lemma get_nth_error X (L : list X) k x :
get L k x → nth_error L k = Some x.
Proof.
induction 1; auto.
Qed.
Lemma nth_error_nth X (L:list X) d x n
: nth_error L n = Some x → nth n L d = x.
Proof.
revert x n. induction L; intros. destruct n; inv H.
destruct n; simpl in ×. inv H; eauto.
eauto.
Qed.
Lemma nth_get {X:Type} L n s {default:X}
(lt : n < length L)
(nthL : nth n L default = s):
get L n s.
Proof.
revert n s default lt nthL. induction L; intros.
exfalso; inv lt.
destruct n.
subst. simpl. constructor.
constructor. eapply IHL; auto.
simpl in lt. omega.
simpl in nthL. eauto.
Qed.
Lemma nth_get_neq {X:Type} L n s {default:X}
(neq:s ≠ default)
(nthL : nth n L default = s):
get L n s.
Proof.
revert n s default neq nthL. induction L; intros.
simpl in nthL; destruct n; congruence.
destruct n.
subst. simpl. constructor.
constructor. eapply IHL; auto.
eassumption.
simpl in nthL. eauto.
Qed.
Lemma nth_error_get X (L : list X) k x :
nth_error L k = Some x → get L k x.
Proof.
revert k; induction L; destruct k; simpl; intros; try discriminate.
injection H. intros. subst. econstructor.
constructor. apply IHL; auto.
Qed.
Lemma nth_error_app X (L L':list X) k x
: nth_error L k = Some x → nth_error (L++L') k = Some x.
Proof.
revert k; induction L; simpl; intros k A. destruct k; inversion A.
destruct k; simpl; eauto.
Qed.
Lemma nth_error_shift X (L L':list X) x
: nth_error (L++(x::L')) (length L) = Some x.
Proof.
induction L; simpl; eauto.
Qed.
Lemma nth_app_shift X (L L':list X) x d
: x < length L → nth x (L++L') d = nth x L d.
Proof.
revert x. induction L; intros. inv H.
destruct x. reflexivity.
simpl in ×. eapply IHL; eauto; omega.
Qed.
Ltac get_functional :=
match goal with
| [ H : get ?XL ?n ?x, H' : get ?XL ?n ?y |- _ ] ⇒
let EQ := fresh "EQ" in
pose proof (get_functional H H') as EQ;
first [ is_var y; subst y; clear H'
| is_var x; subst x; clear H'
| simplify_eq EQ; intros; clear H'; clear_trivial_eqs ]
| _ ⇒ fail "no matching get assumptions"
end.
Ltac eval_nth_get :=
match goal with
| [ H : get ?XL ?n _ |- (bind (nth_error ?XL ?n) _) = _ ] ⇒
rewrite (get_nth_error H); simpl
| _ ⇒ fail "no matching get assumptions"
end.
Lemma get_dec {X} (L:list X) n
: { x | get L n x } + { ∀ x, get L n x → False }.
Proof.
case_eq (nth_error L n); intros. eapply nth_error_get in H.
left; eauto.
right; intros. eapply get_nth_error in H0. congruence.
Defined.
Create HintDb get.
Hint Constructors get : get.
Hint Resolve get_functional : get.
Hint Resolve get_shift : get.
Hint Resolve nth_error_get : get.
Ltac simplify_get := try repeat get_functional; repeat eval_nth_get; eauto with get.
Lemma nth_shift X x (L L':list X) d
: nth (length L+x) (L++L') d = nth x L' d.
Proof.
induction L; intros; simpl; eauto.
Qed.
Lemma get_range X (L:list X) n v
: get L n v → n < length L.
Proof.
revert n. induction L; intros. inv H.
simpl. destruct n. omega.
inv H.
pose proof (IHL n H4). omega.
Qed.
Hint Resolve get_range : len.
Hint Immediate get_range.
Lemma get_range_le (X : Type) (L : 〔X〕) (n : nat) (v : X)
: get L n v → n ≤ ❬L❭.
Proof.
intros. eapply get_range in H. omega.
Qed.
Hint Resolve get_range_le : len.
Hint Immediate get_range_le.
Lemma get_in_range X (L:list X) n
: n < length L → { x:X & get L n x }.
Proof.
general induction n; destruct L; try now(simpl in *; exfalso; omega).
eauto using get.
edestruct IHn. instantiate (1:=L). simpl in *; omega.
eauto using get.
Qed.
Lemma nth_in X L x (d:X)
: x < length L → In (nth x L d) L.
Proof.
revert x. induction L; intros. inv H.
destruct x; simpl. eauto.
right. apply IHL. simpl in ×. omega.
Qed.
In and get
Lemma in_get X `{EqDec X eq} (xl : list X) (x : X) :
In x xl → { n : nat & get xl n x }.
Proof.
induction xl; simpl; intros. inv H0.
decide (x=a); subst.
∃ 0. constructor.
edestruct (IHxl). destruct H0; eauto; congruence.
∃ (S x0). constructor. assumption.
Qed.
Lemma get_in X `{EqDec X eq} (xl : list X) (x : X) n :
get xl n x → In x xl.
Proof.
revert n. induction xl; simpl; intros; inv H0; firstorder.
Qed.
Some helpful tactics
Lemma list_map_eq X Y Z (f:X→Z) g (L:list X) (L':list Y) n x
: List.map f L = List.map g L'
→ get L n x → ∃ y, get L' n y ∧ f x = g y.
Proof.
intros. general induction H0; simpl in ×.
destruct L'; inv H. eexists y; eauto using get.
destruct L'; inv H.
edestruct IHget; eauto; dcr.
eexists x0; split; eauto using get.
Qed.
Lemma map_get_1 X Y (L:list X) (f:X → Y) n x
: get L n x → get (List.map f L) n (f x).
Proof.
intros. general induction H; simpl in *; eauto using get.
Qed.
Hint Resolve map_get_1.
Lemma map_get_eq X Y (L:list X) (f:X → Y) n x y
: get L n x → f x = y → get (List.map f L) n y.
Proof.
intros. general induction H; simpl in *; eauto using get.
Qed.
Lemma map_get_2 X Y (L:list X) (f:X → Y) n x
: get (List.map f L) n x → ∃ x' : X, get L n x'.
Proof.
intros. general induction H; simpl in *;
destruct L; simpl in *; inv Heql; try now (econstructor; eauto using get).
edestruct IHget; eauto using get.
Qed.
Lemma map_get_3 X Y (L:list X) (f:X → Y) n x
: getT (List.map f L) n x → { x' : X & (getT L n x' × (f x' = x))%type }.
Proof.
intros. general induction X0; simpl in *;
destruct L; simpl in *; inv Heql;
try now (econstructor; eauto using getT).
edestruct IHX0; dcr; eauto using getT.
Qed.
Lemma map_get_4 X Y (L:list X) (f:X → Y) n x
: get (List.map f L) n x → { x' : X | get L n x' ∧ f x' = x }.
Proof.
intros. eapply get_getT in H. eapply map_get_3 in H; dcr.
eexists; eauto using getT_get.
Qed.
Lemma map_get X Y (L:list X) (f:X → Y) n blk Z
: get L n blk
→ get (List.map f L) n Z
→ Z = f blk.
Proof.
intros. general induction H; simpl in *; eauto.
Qed.
Lemma get_length_eq X Y (L:list X) (L':list Y) n x
: get L n x → length L = length L' → ∃ y, get L' n y.
Proof.
intros. eapply length_length_eq in H0.
general induction H0; inv H; eauto using get.
edestruct IHlength_eq; eauto using get.
Qed.
Require Compare_dec.
Lemma get_in_range_app X L L' n (x:X)
: n < length L → get (L ++ L') n x → get L n x.
Proof.
intros. general induction L; simpl in *; eauto; try omega.
inv H0; eauto using get. econstructor. eapply IHL; eauto. omega.
Qed.
Lemma get_subst X (L L':list X) x x' n
: get (L ++ x :: L') n x'
→ get L n x'
∨ (x = x' ∧ n = length L)
∨ (get L' (n - S (length L)) x' ∧ n > length L).
Proof.
destruct (Compare_dec.lt_eq_lt_dec n (length L)) as [ [A|A] | A]; intros.
left. eapply get_in_range_app; eauto.
right. left. orewrite (n = length L + 0) in H.
eapply shift_get in H. inv H; eauto.
right. right. split; try omega.
orewrite (n = (length L + S (n - S (length L)))) in H.
eapply shift_get in H. inv H. eauto.
Qed.
Lemma get_app_cases X (L L':list X) x' n
: get (L ++ L') n x'
→ get L n x'
∨ (get L' (n - length L) x' ∧ n ≥ length L).
Proof.
destruct (Compare_dec.le_lt_dec (S n) (length L)) as [ A | A]; intros.
left. eapply get_in_range_app; eauto.
right. split; try omega.
orewrite (n = (length L + (n - length L))) in H.
eapply shift_get in H. eauto.
Qed.
Lemma get_app_right X (L L':list X) n n' x
: n' = (length L' + n) → get L n x → get (L' ++ L) n' x.
Proof.
intros; subst. eapply get_shift; eauto.
Qed.
Lemma get_length_app X (L L':list X) x
: get (L ++ x :: L') (length L) x.
Proof.
orewrite (length L = length L + 0). eapply get_shift. constructor.
Qed.
Lemma get_length_app_eq X (L L':list X) x y l
: l = length L → get (L ++ x :: L') l y → x = y.
Proof.
orewrite (length L = length L + 0). intros; subst.
eapply shift_get in H0. inv H0. eauto.
Qed.
Lemma get_app_lt X (L L':list X) n x (LE:n < length L)
: get (L ++ L') n x ↔ get L n x.
Proof.
revert L L' x LE.
induction n; intros.
- split; intros H; inv H.
+ destruct L; isabsurd.
injection H1; intros; subst. eauto using get.
+ econstructor.
- split; intros H; inv H.
+ destruct L; isabsurd. injection H0; intros; subst.
econstructor. eapply IHn; eauto. simpl in ×. omega.
+ simpl. econstructor. eapply IHn; eauto.
Qed.
Lemma get_app_lt_1 X (L L':list X) n x (LE:n < length L)
: get (L ++ L') n x → get L n x.
Proof.
eapply get_app_lt; eauto.
Qed.
Lemma get_app_ge X (L L':list X) n x (LE:length L ≤ n)
: get (L ++ L') n x ↔ get L' (n - length L) x.
Proof.
revert n L' x LE.
induction L; intros; simpl in ×.
- orewrite (n - 0 = n). reflexivity.
- destruct n; [ exfalso; omega|]; simpl.
rewrite <- (IHL n L' x); try omega.
split; intros; [ inv H|]; eauto using get.
Qed.
Lemma tl_map X Y L (f:X → Y)
: List.map f (tl L) = tl (List.map f L).
Proof.
general induction L; simpl; eauto.
Qed.
Some further helpful lemmata
Lemma nth_error_default {X:Type} v E a (x : X) : Some v = nth_error E a → v = nth_default x E a.
Proof.
intros. revert a H. induction E; intros a' H. destruct a'; inv H.
destruct a'. simpl in H. invc H. reflexivity.
simpl in H. specialize (IHE _ H). subst. reflexivity.
Qed.
Lemma get_rev X (L:list X) n x
: get (rev L) n x →
get L (length L - S n) x.
Proof.
intros.
general induction L; simpl in *; isabsurd.
edestruct get_app_cases; eauto; dcr.
- exploit @get_length; eauto.
rewrite rev_length in H1; simpl in ×.
orewrite (length L - n = S (length L - S n)).
eauto using get.
- rewrite rev_length in H2. orewrite (length L - n = 0).
inv H1; isabsurd; eauto using get.
Qed.
Lemma get_app_right_ge X L L' n (x:X)
: n ≥ length L → get (L ++ L') n x → get L' (n - length L) x.
Proof.
intros. general induction L; simpl in *; eauto; try omega.
- orewrite (n - 0 = n); eauto.
- inv H0; simpl.
+ exfalso; omega.
+ eapply IHL; eauto. omega.
Qed.
Lemma get_length_right A (L1 L2:list A) n (x y:A)
: n > length L1
→ get (L1 ++ x :: L2) n y
→ get L2 (n - S (length L1)) y.
Proof.
intros. general induction L1.
- simpl in ×. inv H0; try omega; simpl.
orewrite (n0 - 0 = n0); eauto.
- simpl in ×. inv H0. omega. simpl in ×.
eapply IHL1; eauto. omega.
Qed.
Hint Extern 5 ⇒
match goal with
| [ H : ❬?A❭ = ❬?B❭, H' : ❬?C❭ = ❬?B❭, H'' : get ?A ?n _ |- ?n < ❬?C❭]
⇒ rewrite H'; rewrite <- H; eapply (get_range H'')
end : len.
Lemma not_get_nth_default A (L:list A) n d
: (∀ x, get L n x → False)
→ nth n L d = d.
Proof.
intros. general induction n; destruct L; simpl; eauto using get.
exfalso; eauto using get.
Qed.
Proof.
intros. revert a H. induction E; intros a' H. destruct a'; inv H.
destruct a'. simpl in H. invc H. reflexivity.
simpl in H. specialize (IHE _ H). subst. reflexivity.
Qed.
Lemma get_rev X (L:list X) n x
: get (rev L) n x →
get L (length L - S n) x.
Proof.
intros.
general induction L; simpl in *; isabsurd.
edestruct get_app_cases; eauto; dcr.
- exploit @get_length; eauto.
rewrite rev_length in H1; simpl in ×.
orewrite (length L - n = S (length L - S n)).
eauto using get.
- rewrite rev_length in H2. orewrite (length L - n = 0).
inv H1; isabsurd; eauto using get.
Qed.
Lemma get_app_right_ge X L L' n (x:X)
: n ≥ length L → get (L ++ L') n x → get L' (n - length L) x.
Proof.
intros. general induction L; simpl in *; eauto; try omega.
- orewrite (n - 0 = n); eauto.
- inv H0; simpl.
+ exfalso; omega.
+ eapply IHL; eauto. omega.
Qed.
Lemma get_length_right A (L1 L2:list A) n (x y:A)
: n > length L1
→ get (L1 ++ x :: L2) n y
→ get L2 (n - S (length L1)) y.
Proof.
intros. general induction L1.
- simpl in ×. inv H0; try omega; simpl.
orewrite (n0 - 0 = n0); eauto.
- simpl in ×. inv H0. omega. simpl in ×.
eapply IHL1; eauto. omega.
Qed.
Hint Extern 5 ⇒
match goal with
| [ H : ❬?A❭ = ❬?B❭, H' : ❬?C❭ = ❬?B❭, H'' : get ?A ?n _ |- ?n < ❬?C❭]
⇒ rewrite H'; rewrite <- H; eapply (get_range H'')
end : len.
Lemma not_get_nth_default A (L:list A) n d
: (∀ x, get L n x → False)
→ nth n L d = d.
Proof.
intros. general induction n; destruct L; simpl; eauto using get.
exfalso; eauto using get.
Qed.