Lvc.Infra.OptionR
Require Import Util DecSolve Coq.Classes.RelationClasses.
Require Import Infra.PartialOrder Terminating Option.
Set Implicit Arguments.
Definition mapOption A B (f:A → B) (o:option A) : option B :=
match o with
| Some a ⇒ Some (f a)
| None ⇒ None
end.
Inductive option_R A B (R: A → B → Prop) : option A → option B → Prop :=
| option_R_None : option_R R None None
| option_R_Some a b : R a b → option_R R (Some a) (Some b).
Smpl Add 100
match goal with
| [ H : @option_R _ _ _ ?A ?B |- _ ] ⇒ inv_if_one_ctor H A B
end : inv_trivial.
Instance option_R_refl A R `{Reflexive A R} : Reflexive (option_R R).
Proof.
unfold Reflexive in *; intros []; eauto using option_R.
Qed.
Instance option_R_sym A R `{Symmetric A R} : Symmetric (option_R R).
Proof.
unfold Symmetric in *; intros; inv H0; eauto using option_R.
Qed.
Instance option_R_trans A R `{Transitive A R} : Transitive (option_R R).
Proof.
hnf; intros ? ? ? B C.
inv B; inv C; econstructor; eauto.
Qed.
Instance option_R_equivalence A R `{Equivalence A R} : Equivalence (option_R R).
Proof.
econstructor; eauto with typeclass_instances.
Qed.
Instance option_R_anti A R Eq `{EqA:Equivalence _ Eq} `{@Antisymmetric A Eq EqA R}
: @Antisymmetric _ (option_R Eq) (option_R_equivalence _ _) (option_R R).
Proof.
intros ? ? B C. inv B; inv C; eauto using option_R.
Qed.
Instance option_R_dec A B (R:A→B→Prop)
`{∀ a b, Computable (R a b)} (a:option A) (b:option B) :
Computable (option_R R a b).
Proof.
destruct a,b; try dec_solve.
decide (R a b); dec_solve.
Defined.
Instance PartialOrder_option Dom `{PartialOrder Dom}
: PartialOrder (option Dom) := {
poLe := option_R poLe;
poLe_dec := @option_R_dec _ _ poLe poLe_dec;
poEq := option_R poEq;
poEq_dec := @option_R_dec _ _ poEq poEq_dec;
}.
Proof.
- intros; inv H0; eauto using option_R, poLe_refl.
Defined.
Instance terminating_option Dom `{PO:PartialOrder Dom}
: Terminating Dom poLt
→ Terminating (option Dom) poLt.
Proof.
intros. hnf; intros.
destruct x.
- specialize (H d).
general induction H.
econstructor; intros. inv H1; inv H2.
eapply H0; eauto using option_R.
split; eauto. intro. eapply H3; econstructor; eauto.
- econstructor; intros. inv H0.
exfalso. inv H1. eapply H2; reflexivity.
Qed.
Inductive fstNoneOrR (X Y:Type) (R:X→Y→Prop)
: option X → option Y → Prop :=
| fstNone (x:option Y) : fstNoneOrR R None x
| bothR (x:X) (y:Y) : R x y → fstNoneOrR R (Some x) (Some y)
.
Smpl Add 100
match goal with
| [ H : @fstNoneOrR _ _ _ ?A _ |- _ ] ⇒
is_constructor_app A; invc H
end : inv_trivial.
Instance fstNoneOrR_Reflexive {A : Type} {R : relation A} {Rrefl: Reflexive R}
: Reflexive (fstNoneOrR R).
Proof.
hnf; intros. destruct x; econstructor; eauto.
Qed.
Instance fstNoneOrR_trans A R `{Transitive A R} : Transitive (fstNoneOrR R).
Proof.
hnf; intros ? ? ? B C.
inv B; inv C; econstructor; eauto.
Qed.
Instance fstNoneOrR_anti A R Eq `{Equivalence _ Eq}
`{EqA:Equivalence (option A) (option_R Eq)} `{@Antisymmetric A Eq _ R}
: @Antisymmetric (option A) _ _ (fstNoneOrR R).
Proof.
hnf; intros. inv H1; inv H2. reflexivity.
econstructor. eapply H0; eauto.
Qed.
Instance fstNoneOrR_dec A B (R:A→B→Prop)
`{∀ a b, Computable (R a b)} (a:option A) (b:option B) :
Computable (fstNoneOrR R a b).
Proof.
destruct a,b; try dec_solve.
decide (R a b); dec_solve.
Defined.
Instance PartialOrder_option_fstNoneOrR Dom `{PartialOrder Dom}
: PartialOrder (option Dom) := {
poLe := fstNoneOrR poLe;
poLe_dec := _;
poEq := option_R poEq;
poEq_dec := _;
}.
Proof.
- intros; inv H0; eauto using fstNoneOrR, poLe_refl.
Defined.
Lemma poLe_opt_inv T H a b
: @poLe (option T) (@PartialOrder_option_fstNoneOrR T H)
(@Some T a) (@Some T b)
→ poLe a b.
Proof.
inversion 1; eauto.
Qed.
Smpl Add
match goal with
| [ H : @poLe (option ?T) (@PartialOrder_option_fstNoneOrR ?T ?H')
?A (@Some ?T ?b) |- _ ] ⇒
eapply (@poLe_opt_inv T H') in H
| [ H : @poLe (option ?T) (@PartialOrder_option_fstNoneOrR ?T ?H')
(@Some ?T ?a) None |- _ ] ⇒
exfalso; inv H
| [ H : @poLe (option ?T) (@PartialOrder_option_fstNoneOrR ?T ?H')
None _ |- _ ] ⇒ clear H
end : inv_trivial.
Inductive ifFstR {X Y} (R:X → Y → Prop) : option X → Y → Prop :=
| IfFstR_None y : ifFstR R None y
| IfFstR_R x y : R x y → ifFstR R (Some x) y.
Smpl Add 100
match goal with
| [ H : @ifFstR _ _ _ ?A _ |- _ ] ⇒
is_constructor_app A; invc H
end : inv_trivial.
Inductive ifSndR {X Y} (R:X → Y → Prop) : X → option Y → Prop :=
| ifsndR_None x : ifSndR R x None
| ifsndR_R x y : R x y → ifSndR R x (Some y).
Smpl Add 100
match goal with
| [ H : @ifSndR _ _ _ _ ?B |- _ ] ⇒
is_constructor_app B; invc H
end : inv_trivial.
Lemma poEq_None_inv (T : Type) (H : PartialOrder T) a
: a ≣ None → a = None.
Proof.
intros. invc H0. reflexivity.
Qed.
Smpl Add
match goal with
| [ H : ?Y ≣ ⎣⎦ |- _ ] ⇒ eapply poEq_None_inv in H; try subst Y
| [ H : ⎣⎦ ≣ ?Y |- _ ] ⇒ symmetry in H; eapply poEq_None_inv in H; try subst Y
end : inv_trivial.
Lemma poEq_Some_inv (T : Type) (H : PartialOrder T) a b
: a ≣ Some b → ∃ a', a = Some a' ∧ poEq a' b.
Proof.
intros. invc H0. eauto.
Qed.
Smpl Add
match goal with
| [ H : ?Y ≣ Some _ |- _ ] ⇒ eapply poEq_Some_inv in H;
destruct H as [? [? H]]; try subst Y
| [ H : Some _ ≣ ?Y |- _ ] ⇒ symmetry in H; eapply poEq_Some_inv in H;
destruct H as [? [? H]]; try subst Y
end : inv_trivial.
Lemma poLe_option_None X `{PartialOrder X} (x:option X)
: None ⊑ x.
Proof.
econstructor.
Qed.
Hint Resolve poLe_option_None.
Lemma poLe_Some_struct A `{PartialOrder A} (a b : A)
: poLe a b
→ poLe (Some a) (Some b).
Proof.
econstructor; eauto.
Qed.
Hint Resolve poLe_Some_struct.
Smpl Add match goal with
| [ H : poLe _ None |- _ ] ⇒ invc H
| [ H : ⎣ ?x ⎦ ≠ ⎣ ?x ⎦ |- _ ] ⇒ exfalso; apply H; reflexivity
end : inv_trivial.
Require Import Infra.PartialOrder Terminating Option.
Set Implicit Arguments.
Definition mapOption A B (f:A → B) (o:option A) : option B :=
match o with
| Some a ⇒ Some (f a)
| None ⇒ None
end.
Inductive option_R A B (R: A → B → Prop) : option A → option B → Prop :=
| option_R_None : option_R R None None
| option_R_Some a b : R a b → option_R R (Some a) (Some b).
Smpl Add 100
match goal with
| [ H : @option_R _ _ _ ?A ?B |- _ ] ⇒ inv_if_one_ctor H A B
end : inv_trivial.
Instance option_R_refl A R `{Reflexive A R} : Reflexive (option_R R).
Proof.
unfold Reflexive in *; intros []; eauto using option_R.
Qed.
Instance option_R_sym A R `{Symmetric A R} : Symmetric (option_R R).
Proof.
unfold Symmetric in *; intros; inv H0; eauto using option_R.
Qed.
Instance option_R_trans A R `{Transitive A R} : Transitive (option_R R).
Proof.
hnf; intros ? ? ? B C.
inv B; inv C; econstructor; eauto.
Qed.
Instance option_R_equivalence A R `{Equivalence A R} : Equivalence (option_R R).
Proof.
econstructor; eauto with typeclass_instances.
Qed.
Instance option_R_anti A R Eq `{EqA:Equivalence _ Eq} `{@Antisymmetric A Eq EqA R}
: @Antisymmetric _ (option_R Eq) (option_R_equivalence _ _) (option_R R).
Proof.
intros ? ? B C. inv B; inv C; eauto using option_R.
Qed.
Instance option_R_dec A B (R:A→B→Prop)
`{∀ a b, Computable (R a b)} (a:option A) (b:option B) :
Computable (option_R R a b).
Proof.
destruct a,b; try dec_solve.
decide (R a b); dec_solve.
Defined.
Instance PartialOrder_option Dom `{PartialOrder Dom}
: PartialOrder (option Dom) := {
poLe := option_R poLe;
poLe_dec := @option_R_dec _ _ poLe poLe_dec;
poEq := option_R poEq;
poEq_dec := @option_R_dec _ _ poEq poEq_dec;
}.
Proof.
- intros; inv H0; eauto using option_R, poLe_refl.
Defined.
Instance terminating_option Dom `{PO:PartialOrder Dom}
: Terminating Dom poLt
→ Terminating (option Dom) poLt.
Proof.
intros. hnf; intros.
destruct x.
- specialize (H d).
general induction H.
econstructor; intros. inv H1; inv H2.
eapply H0; eauto using option_R.
split; eauto. intro. eapply H3; econstructor; eauto.
- econstructor; intros. inv H0.
exfalso. inv H1. eapply H2; reflexivity.
Qed.
Inductive fstNoneOrR (X Y:Type) (R:X→Y→Prop)
: option X → option Y → Prop :=
| fstNone (x:option Y) : fstNoneOrR R None x
| bothR (x:X) (y:Y) : R x y → fstNoneOrR R (Some x) (Some y)
.
Smpl Add 100
match goal with
| [ H : @fstNoneOrR _ _ _ ?A _ |- _ ] ⇒
is_constructor_app A; invc H
end : inv_trivial.
Instance fstNoneOrR_Reflexive {A : Type} {R : relation A} {Rrefl: Reflexive R}
: Reflexive (fstNoneOrR R).
Proof.
hnf; intros. destruct x; econstructor; eauto.
Qed.
Instance fstNoneOrR_trans A R `{Transitive A R} : Transitive (fstNoneOrR R).
Proof.
hnf; intros ? ? ? B C.
inv B; inv C; econstructor; eauto.
Qed.
Instance fstNoneOrR_anti A R Eq `{Equivalence _ Eq}
`{EqA:Equivalence (option A) (option_R Eq)} `{@Antisymmetric A Eq _ R}
: @Antisymmetric (option A) _ _ (fstNoneOrR R).
Proof.
hnf; intros. inv H1; inv H2. reflexivity.
econstructor. eapply H0; eauto.
Qed.
Instance fstNoneOrR_dec A B (R:A→B→Prop)
`{∀ a b, Computable (R a b)} (a:option A) (b:option B) :
Computable (fstNoneOrR R a b).
Proof.
destruct a,b; try dec_solve.
decide (R a b); dec_solve.
Defined.
Instance PartialOrder_option_fstNoneOrR Dom `{PartialOrder Dom}
: PartialOrder (option Dom) := {
poLe := fstNoneOrR poLe;
poLe_dec := _;
poEq := option_R poEq;
poEq_dec := _;
}.
Proof.
- intros; inv H0; eauto using fstNoneOrR, poLe_refl.
Defined.
Lemma poLe_opt_inv T H a b
: @poLe (option T) (@PartialOrder_option_fstNoneOrR T H)
(@Some T a) (@Some T b)
→ poLe a b.
Proof.
inversion 1; eauto.
Qed.
Smpl Add
match goal with
| [ H : @poLe (option ?T) (@PartialOrder_option_fstNoneOrR ?T ?H')
?A (@Some ?T ?b) |- _ ] ⇒
eapply (@poLe_opt_inv T H') in H
| [ H : @poLe (option ?T) (@PartialOrder_option_fstNoneOrR ?T ?H')
(@Some ?T ?a) None |- _ ] ⇒
exfalso; inv H
| [ H : @poLe (option ?T) (@PartialOrder_option_fstNoneOrR ?T ?H')
None _ |- _ ] ⇒ clear H
end : inv_trivial.
Inductive ifFstR {X Y} (R:X → Y → Prop) : option X → Y → Prop :=
| IfFstR_None y : ifFstR R None y
| IfFstR_R x y : R x y → ifFstR R (Some x) y.
Smpl Add 100
match goal with
| [ H : @ifFstR _ _ _ ?A _ |- _ ] ⇒
is_constructor_app A; invc H
end : inv_trivial.
Inductive ifSndR {X Y} (R:X → Y → Prop) : X → option Y → Prop :=
| ifsndR_None x : ifSndR R x None
| ifsndR_R x y : R x y → ifSndR R x (Some y).
Smpl Add 100
match goal with
| [ H : @ifSndR _ _ _ _ ?B |- _ ] ⇒
is_constructor_app B; invc H
end : inv_trivial.
Lemma poEq_None_inv (T : Type) (H : PartialOrder T) a
: a ≣ None → a = None.
Proof.
intros. invc H0. reflexivity.
Qed.
Smpl Add
match goal with
| [ H : ?Y ≣ ⎣⎦ |- _ ] ⇒ eapply poEq_None_inv in H; try subst Y
| [ H : ⎣⎦ ≣ ?Y |- _ ] ⇒ symmetry in H; eapply poEq_None_inv in H; try subst Y
end : inv_trivial.
Lemma poEq_Some_inv (T : Type) (H : PartialOrder T) a b
: a ≣ Some b → ∃ a', a = Some a' ∧ poEq a' b.
Proof.
intros. invc H0. eauto.
Qed.
Smpl Add
match goal with
| [ H : ?Y ≣ Some _ |- _ ] ⇒ eapply poEq_Some_inv in H;
destruct H as [? [? H]]; try subst Y
| [ H : Some _ ≣ ?Y |- _ ] ⇒ symmetry in H; eapply poEq_Some_inv in H;
destruct H as [? [? H]]; try subst Y
end : inv_trivial.
Lemma poLe_option_None X `{PartialOrder X} (x:option X)
: None ⊑ x.
Proof.
econstructor.
Qed.
Hint Resolve poLe_option_None.
Lemma poLe_Some_struct A `{PartialOrder A} (a b : A)
: poLe a b
→ poLe (Some a) (Some b).
Proof.
econstructor; eauto.
Qed.
Hint Resolve poLe_Some_struct.
Smpl Add match goal with
| [ H : poLe _ None |- _ ] ⇒ invc H
| [ H : ⎣ ?x ⎦ ≠ ⎣ ?x ⎦ |- _ ] ⇒ exfalso; apply H; reflexivity
end : inv_trivial.