Lvc.Infra.WithTop
Require Import Util MapBasics Infra.Lattice Infra.PartialOrder DecSolve .
Set Implicit Arguments.
Inductive withTop (A:Type) :=
| Top : withTop A
| wTA (a:A) : withTop A.
Arguments Top [A].
Arguments wTA [A] a.
Instance withTop_eq_dec A `{EqDec A eq} : EqDec (withTop A) eq.
Proof.
hnf. destruct x,y; eauto; try dec_solve.
destruct (H a a0); try dec_solve.
hnf in e. subst. left; eauto.
Qed.
Inductive withTop_le A R `{EqDec A R} : withTop A → withTop A → Prop :=
| WithTopLe_refl a b : R a b → withTop_le (wTA a) (wTA b)
| WithTopLe_top a : withTop_le a Top.
Instance withTop_le_dec A R `{EqDec A R} (a b:withTop A) : Computable (withTop_le a b).
Proof.
destruct a,b; hnf; eauto using withTop_le.
- dec_solve.
- decide (a === a0); dec_solve.
Defined.
Inductive withTop_eq A R `{EqDec A R} : withTop A → withTop A → Prop :=
| WithTopEq_refl a b : R a b → withTop_eq (wTA a) (wTA b)
| WithTopEq_top : withTop_eq Top Top.
Lemma withTopEq_refl_sym A R `{EqDec A R} a b
: poEq a b → withTop_eq (wTA b) (wTA a).
Proof.
econstructor. symmetry. eauto.
Qed.
Hint Resolve withTopEq_refl_sym.
Instance withTop_eq_comp A R `{EqDec A R} (a b:withTop A)
: Computable (withTop_eq a b).
Proof.
destruct a,b; hnf; eauto using withTop_eq.
- dec_solve.
- dec_solve.
- decide (a === a0); dec_solve.
Defined.
Instance withTop_eq_equiv A R `{EqDec A R} : Equivalence (withTop_eq (A:=A) (R:=R)).
Proof.
constructor.
- hnf; intros []; eauto using @withTop_eq.
econstructor. reflexivity.
- hnf; intros [] []; inversion 1; subst; eauto using @withTop_eq.
econstructor. symmetry. eauto.
- hnf; intros [] [] [] X Y; inv X; inv Y; eauto using @withTop_eq.
econstructor. etransitivity; eauto.
Qed.
Lemma withTop_le_refl A R `{EqDec A R}
: ∀ d d' : withTop A, withTop_eq d d' → withTop_le d d'.
Proof.
intros ? ? X; inv X; eauto using withTop_le.
Qed.
Instance withTop_le_Refl A R `{EqDec A R} : Reflexive (withTop_le (A:=A) (R:=R)).
Proof.
hnf; intros.
eapply withTop_le_refl. reflexivity.
Qed.
Instance withTop_le_trans A R `{EqDec A R}
: Transitive (withTop_le (A:=A) (R:=R)).
Proof.
hnf; intros [] [] [] X Y; inv X; inv Y; eauto using withTop_le.
econstructor; etransitivity; eauto.
Qed.
Instance withTop_le_Trans A R `{EqDec A R} : Transitive (withTop_le (A:=A) (R:=R)).
Proof.
hnf; intros.
eapply withTop_le_trans. etransitivity; eauto. reflexivity.
Qed.
Instance withTop_le_anti A R `{EqDec A R}
: Antisymmetric (withTop A) (withTop_eq (A:=A) (R:=R)) (withTop_le (A:=A) (R:=R)).
Proof.
hnf; intros [] [] X Y; inv X; inv Y; eauto using withTop_eq.
Qed.
Instance withTop_PO A R `{EqDec A R} : PartialOrder (withTop A) :=
{
poLe := @withTop_le A R _ _;
poEq := @withTop_eq A R _ _
}.
Proof.
- eapply withTop_le_refl.
Defined.
Lemma withTop_poLe_inv A R `{EqDec A R} (a b:A)
: poLe (wTA a) (wTA b)
→ a === b.
Proof.
intros. inv H0. eapply H3.
Qed.
Smpl Add 100 match goal with
| [ H : @poLe _ _ (wTA _) (wTA _) |- _ ] ⇒
eapply withTop_poLe_inv in H
| [ H : @poLe _ _ Top _ |- _ ] ⇒ invc H
| [ H : @poLe _ _ _ (wTA _) |- _ ] ⇒ invc H
| [ H : @poEq _ _ Top _ |- _ ] ⇒ invc H
| [ H : @poEq _ _ _ Top |- _ ] ⇒ invc H
| [ H : @poEq _ _ _ (wTA _) |- _ ] ⇒ invc H
| [ H : @poEq _ _ (wTA _) _ |- _ ] ⇒ invc H
| [ H : @withTop_le _ _ _ _ _ _ |- _ ] ⇒ invc H
end : inv_trivial.
Definition withTop_generic_join A R `{EqDec A R} (a b:withTop A) :=
match a, b with
| Top, _ ⇒ Top
| _, Top ⇒ Top
| wTA a, wTA b ⇒ if [ a === b ] then wTA a else Top
end.
Lemma withTop_generic_join_bound A R `{EqDec A R}
: ∀ a b : withTop A, a ⊑ b → withTop_generic_join a b ⊑ b.
Proof.
intros []; simpl; intros; repeat cases; eauto; econstructor; eauto.
Qed.
Lemma withTop_generic_join_sym A R `{EqDec A R}
: ∀ a b : withTop A, withTop_generic_join a b ≣ withTop_generic_join b a.
Proof.
intros [] []; simpl; try econstructor.
repeat cases; try econstructor; eauto.
- exfalso; eapply NOTCOND. symmetry. eauto.
Qed.
Lemma withTop_generic_join_assoc A R `{EqDec A R}
: ∀ a b c : withTop A,
withTop_generic_join (withTop_generic_join a b) c
≣ withTop_generic_join a (withTop_generic_join b c).
Proof.
intros [] [] []; simpl; repeat (cases; simpl); eauto.
- exfalso. eapply NOTCOND. rewrite <- COND. eauto.
- exfalso. eapply NOTCOND. rewrite COND. eauto.
- exfalso. eapply NOTCOND. eauto.
Qed.
Lemma poLe_withTopLe_refl A R `{EqDec A R} (a b : A)
: R a b
→ poLe (wTA a) (wTA b).
Proof.
econstructor; eauto.
Qed.
Lemma poEq_withTopEq_refl A R `{EqDec A R} (a b : A)
: R a b
→ poEq (wTA a) (wTA b).
Proof.
econstructor; eauto.
Qed.
Lemma poLe_withTopLe_top A R `{EqDec A R} (x:withTop A)
: poLe x Top.
Proof.
econstructor 2.
Qed.
Hint Resolve poEq_withTopEq_refl poLe_withTopLe_refl poLe_withTopLe_top.
Lemma withTop_generic_join_exp A R `{EqDec A R}
: ∀ a b : withTop A, a ⊑ withTop_generic_join a b.
Proof.
intros [] []; simpl; repeat (cases; simpl); eauto.
Qed.
Instance withTop_generic_join_poEq A R `{EqDec A R}
: Proper (poEq ==> poEq ==> poEq) (withTop_generic_join (A:=A) (R:=R)).
Proof.
unfold Proper, respectful; intros.
destruct x,y,x0,y0; simpl;
repeat (cases; simpl); eauto;
clear_trivial_eqs.
- exfalso. eapply NOTCOND.
rewrite <- H3, <- H4. eauto.
- exfalso. eapply NOTCOND. rewrite H4, H3. eauto.
Qed.
Instance withTop_generic_join_poLe A R `{EqDec A R}
: Proper (poLe ==> poLe ==> poLe) (withTop_generic_join (A:=A) (R:=R)).
Proof.
unfold Proper, respectful; intros.
destruct x,y,x0,y0; simpl; eauto using withTop_le;
repeat (cases; simpl); eauto using withTop_le.
- exfalso. eapply NOTCOND. rewrite H0, H1. eauto.
Qed.
Instance withTop_JSL A R `{EqDec A R} : JoinSemiLattice (withTop A) :=
{
join := @withTop_generic_join A R _ _
}.
Proof.
- eapply withTop_generic_join_bound.
- eapply withTop_generic_join_sym.
- eapply withTop_generic_join_assoc.
- eapply withTop_generic_join_exp.
Defined.
Inductive withUnknown (A:Type) :=
| Known (a:A) : withUnknown A
| Unknown : withUnknown A.
Arguments Unknown [A].
Arguments Known [A] a.
Instance withUnknown_eq_dec A `{EqDec A eq} : EqDec (withUnknown A) eq.
Proof.
hnf. destruct x,y; eauto; try dec_solve.
destruct (H a a0); try dec_solve.
hnf in e. subst. left; eauto.
Qed.
Inductive withUnknown_eq A R `{EqDec A R} : withUnknown A → withUnknown A → Prop :=
| WithUnknownEq_refl a b : R a b → withUnknown_eq (Known a) (Known b)
| WithUnknownEq_top : withUnknown_eq Unknown Unknown.
Smpl Add 100 match goal with
| [ H : Known _ === Known _ |- _ ] ⇒ invc H
| [ H : withUnknown_eq _ _ |- _ ] ⇒ invc H
end : inv_trivial.
Lemma withUnknownEq_refl_sym A `{PartialOrder A} a b
: poEq a b → withUnknown_eq (Known b) (Known a).
Proof.
econstructor. symmetry. eauto.
Qed.
Hint Resolve withUnknownEq_refl_sym.
Instance withUnknown_eq_comp A R `{EqDec A R} (a b:withUnknown A)
: Computable (withUnknown_eq a b).
Proof.
destruct a,b; hnf; eauto using withUnknown_eq.
- decide (a === a0); dec_solve.
- dec_solve.
- dec_solve.
Defined.
Instance withUnknown_eq_equiv A R `{EqDec A R}
: Equivalence (withUnknown_eq (A:=A) (R:=R)).
Proof.
constructor.
- hnf; intros []; eauto using @withUnknown_eq.
econstructor. reflexivity.
- hnf; intros [] []; inversion 1; subst; eauto using @withUnknown_eq.
econstructor. symmetry. eauto.
- hnf; intros [] [] [] X Y; inv X; inv Y; eauto using @withUnknown_eq.
econstructor. etransitivity; eauto.
Qed.
Instance withUnknown_PO A R `{EqDec A R} : PartialOrder (withUnknown A) :=
{
poLe := @withUnknown_eq A R _ _ ;
poEq := @withUnknown_eq A R _ _
}.
Proof.
- eauto.
- hnf; intros; eauto.
Defined.
Instance withUnknown_EqDec A R `{EqDec A R}
: EqDec (withUnknown A) (@withUnknown_eq _ _ _ _).
Proof.
hnf. eapply withUnknown_eq_comp.
Defined.
Inductive withBot (A:Type) :=
| Bot : withBot A
| WBElt (a:A) : withBot A.
Arguments Bot [A].
Arguments WBElt [A] a.
Instance withBot_eq_dec A `{EqDec A eq} : EqDec (withBot A) eq.
Proof.
hnf. destruct x,y; eauto; try dec_solve.
destruct (H a a0); try dec_solve.
hnf in e. subst. left; eauto.
Qed.
Inductive withBot_le A `{PartialOrder A} : withBot A → withBot A → Prop :=
| WithBotLe_refl a b : poLe a b → withBot_le (WBElt a) (WBElt b)
| WithBotLe_bot a : withBot_le Bot a.
Instance withBot_le_dec A `{PartialOrder A} (a b:withBot A) : Computable (withBot_le a b).
Proof.
destruct a,b; hnf; eauto using withBot_le.
- dec_solve.
- decide (poLe a a0); dec_solve.
Defined.
Inductive withBot_eq A `{PartialOrder A} : withBot A → withBot A → Prop :=
| WithBotEq_refl a b : poEq a b → withBot_eq (WBElt a) (WBElt b)
| WithBotEq_bot : withBot_eq Bot Bot.
Lemma withBotEq_refl_sym A `{PartialOrder A} a b
: poEq a b → withBot_eq (WBElt b) (WBElt a).
Proof.
econstructor. symmetry. eauto.
Qed.
Hint Resolve withBotEq_refl_sym.
Instance withBot_eq_comp A `{PartialOrder A} (a b:withBot A)
: Computable (withBot_eq a b).
Proof.
destruct a,b; hnf; eauto using withBot_eq.
- dec_solve.
- dec_solve.
- decide (poEq a a0); dec_solve.
Defined.
Instance withBot_eq_equiv A `{PartialOrder A} : Equivalence (withBot_eq (A:=A)).
Proof.
constructor.
- hnf; intros []; eauto using @withBot_eq.
- hnf; intros [] []; inversion 1; subst; eauto using @withBot_eq.
- hnf; intros [] [] [] X Y; inv X; inv Y; eauto using @withBot_eq.
econstructor. etransitivity; eauto.
Qed.
Lemma withBotLe_refl A `{PartialOrder A}
: ∀ d d' : withBot A, withBot_eq d d' → withBot_le d d'.
Proof.
intros ? ? X; inv X; eauto using withBot_le.
Qed.
Instance withBot_le_trans A `{PartialOrder A}
: Transitive (withBot_le (A:=A)).
Proof.
hnf; intros [] [] [] X Y; inv X; inv Y; eauto using withBot_le.
Qed.
Instance withBot_le_anti A `{PartialOrder A}
: Antisymmetric (withBot A) (withBot_eq (A:=A)) (withBot_le (A:=A)).
Proof.
hnf; intros [] [] X Y; inv X; inv Y; eauto using withBot_eq.
exploit poLe_antisymmetric; eauto.
Qed.
Instance withBot_PO A `{PartialOrder A} : PartialOrder (withBot A) :=
{
poLe := @withBot_le A _;
poEq := @withBot_eq A _
}.
Proof.
- eapply withBotLe_refl.
Defined.
Instance withBot_lower_bounded A `{PartialOrder A} : LowerBounded (withBot A) :=
{
bottom := Bot
}.
Proof.
intros. destruct a; econstructor.
Qed.
Set Implicit Arguments.
Inductive withTop (A:Type) :=
| Top : withTop A
| wTA (a:A) : withTop A.
Arguments Top [A].
Arguments wTA [A] a.
Instance withTop_eq_dec A `{EqDec A eq} : EqDec (withTop A) eq.
Proof.
hnf. destruct x,y; eauto; try dec_solve.
destruct (H a a0); try dec_solve.
hnf in e. subst. left; eauto.
Qed.
Inductive withTop_le A R `{EqDec A R} : withTop A → withTop A → Prop :=
| WithTopLe_refl a b : R a b → withTop_le (wTA a) (wTA b)
| WithTopLe_top a : withTop_le a Top.
Instance withTop_le_dec A R `{EqDec A R} (a b:withTop A) : Computable (withTop_le a b).
Proof.
destruct a,b; hnf; eauto using withTop_le.
- dec_solve.
- decide (a === a0); dec_solve.
Defined.
Inductive withTop_eq A R `{EqDec A R} : withTop A → withTop A → Prop :=
| WithTopEq_refl a b : R a b → withTop_eq (wTA a) (wTA b)
| WithTopEq_top : withTop_eq Top Top.
Lemma withTopEq_refl_sym A R `{EqDec A R} a b
: poEq a b → withTop_eq (wTA b) (wTA a).
Proof.
econstructor. symmetry. eauto.
Qed.
Hint Resolve withTopEq_refl_sym.
Instance withTop_eq_comp A R `{EqDec A R} (a b:withTop A)
: Computable (withTop_eq a b).
Proof.
destruct a,b; hnf; eauto using withTop_eq.
- dec_solve.
- dec_solve.
- decide (a === a0); dec_solve.
Defined.
Instance withTop_eq_equiv A R `{EqDec A R} : Equivalence (withTop_eq (A:=A) (R:=R)).
Proof.
constructor.
- hnf; intros []; eauto using @withTop_eq.
econstructor. reflexivity.
- hnf; intros [] []; inversion 1; subst; eauto using @withTop_eq.
econstructor. symmetry. eauto.
- hnf; intros [] [] [] X Y; inv X; inv Y; eauto using @withTop_eq.
econstructor. etransitivity; eauto.
Qed.
Lemma withTop_le_refl A R `{EqDec A R}
: ∀ d d' : withTop A, withTop_eq d d' → withTop_le d d'.
Proof.
intros ? ? X; inv X; eauto using withTop_le.
Qed.
Instance withTop_le_Refl A R `{EqDec A R} : Reflexive (withTop_le (A:=A) (R:=R)).
Proof.
hnf; intros.
eapply withTop_le_refl. reflexivity.
Qed.
Instance withTop_le_trans A R `{EqDec A R}
: Transitive (withTop_le (A:=A) (R:=R)).
Proof.
hnf; intros [] [] [] X Y; inv X; inv Y; eauto using withTop_le.
econstructor; etransitivity; eauto.
Qed.
Instance withTop_le_Trans A R `{EqDec A R} : Transitive (withTop_le (A:=A) (R:=R)).
Proof.
hnf; intros.
eapply withTop_le_trans. etransitivity; eauto. reflexivity.
Qed.
Instance withTop_le_anti A R `{EqDec A R}
: Antisymmetric (withTop A) (withTop_eq (A:=A) (R:=R)) (withTop_le (A:=A) (R:=R)).
Proof.
hnf; intros [] [] X Y; inv X; inv Y; eauto using withTop_eq.
Qed.
Instance withTop_PO A R `{EqDec A R} : PartialOrder (withTop A) :=
{
poLe := @withTop_le A R _ _;
poEq := @withTop_eq A R _ _
}.
Proof.
- eapply withTop_le_refl.
Defined.
Lemma withTop_poLe_inv A R `{EqDec A R} (a b:A)
: poLe (wTA a) (wTA b)
→ a === b.
Proof.
intros. inv H0. eapply H3.
Qed.
Smpl Add 100 match goal with
| [ H : @poLe _ _ (wTA _) (wTA _) |- _ ] ⇒
eapply withTop_poLe_inv in H
| [ H : @poLe _ _ Top _ |- _ ] ⇒ invc H
| [ H : @poLe _ _ _ (wTA _) |- _ ] ⇒ invc H
| [ H : @poEq _ _ Top _ |- _ ] ⇒ invc H
| [ H : @poEq _ _ _ Top |- _ ] ⇒ invc H
| [ H : @poEq _ _ _ (wTA _) |- _ ] ⇒ invc H
| [ H : @poEq _ _ (wTA _) _ |- _ ] ⇒ invc H
| [ H : @withTop_le _ _ _ _ _ _ |- _ ] ⇒ invc H
end : inv_trivial.
Definition withTop_generic_join A R `{EqDec A R} (a b:withTop A) :=
match a, b with
| Top, _ ⇒ Top
| _, Top ⇒ Top
| wTA a, wTA b ⇒ if [ a === b ] then wTA a else Top
end.
Lemma withTop_generic_join_bound A R `{EqDec A R}
: ∀ a b : withTop A, a ⊑ b → withTop_generic_join a b ⊑ b.
Proof.
intros []; simpl; intros; repeat cases; eauto; econstructor; eauto.
Qed.
Lemma withTop_generic_join_sym A R `{EqDec A R}
: ∀ a b : withTop A, withTop_generic_join a b ≣ withTop_generic_join b a.
Proof.
intros [] []; simpl; try econstructor.
repeat cases; try econstructor; eauto.
- exfalso; eapply NOTCOND. symmetry. eauto.
Qed.
Lemma withTop_generic_join_assoc A R `{EqDec A R}
: ∀ a b c : withTop A,
withTop_generic_join (withTop_generic_join a b) c
≣ withTop_generic_join a (withTop_generic_join b c).
Proof.
intros [] [] []; simpl; repeat (cases; simpl); eauto.
- exfalso. eapply NOTCOND. rewrite <- COND. eauto.
- exfalso. eapply NOTCOND. rewrite COND. eauto.
- exfalso. eapply NOTCOND. eauto.
Qed.
Lemma poLe_withTopLe_refl A R `{EqDec A R} (a b : A)
: R a b
→ poLe (wTA a) (wTA b).
Proof.
econstructor; eauto.
Qed.
Lemma poEq_withTopEq_refl A R `{EqDec A R} (a b : A)
: R a b
→ poEq (wTA a) (wTA b).
Proof.
econstructor; eauto.
Qed.
Lemma poLe_withTopLe_top A R `{EqDec A R} (x:withTop A)
: poLe x Top.
Proof.
econstructor 2.
Qed.
Hint Resolve poEq_withTopEq_refl poLe_withTopLe_refl poLe_withTopLe_top.
Lemma withTop_generic_join_exp A R `{EqDec A R}
: ∀ a b : withTop A, a ⊑ withTop_generic_join a b.
Proof.
intros [] []; simpl; repeat (cases; simpl); eauto.
Qed.
Instance withTop_generic_join_poEq A R `{EqDec A R}
: Proper (poEq ==> poEq ==> poEq) (withTop_generic_join (A:=A) (R:=R)).
Proof.
unfold Proper, respectful; intros.
destruct x,y,x0,y0; simpl;
repeat (cases; simpl); eauto;
clear_trivial_eqs.
- exfalso. eapply NOTCOND.
rewrite <- H3, <- H4. eauto.
- exfalso. eapply NOTCOND. rewrite H4, H3. eauto.
Qed.
Instance withTop_generic_join_poLe A R `{EqDec A R}
: Proper (poLe ==> poLe ==> poLe) (withTop_generic_join (A:=A) (R:=R)).
Proof.
unfold Proper, respectful; intros.
destruct x,y,x0,y0; simpl; eauto using withTop_le;
repeat (cases; simpl); eauto using withTop_le.
- exfalso. eapply NOTCOND. rewrite H0, H1. eauto.
Qed.
Instance withTop_JSL A R `{EqDec A R} : JoinSemiLattice (withTop A) :=
{
join := @withTop_generic_join A R _ _
}.
Proof.
- eapply withTop_generic_join_bound.
- eapply withTop_generic_join_sym.
- eapply withTop_generic_join_assoc.
- eapply withTop_generic_join_exp.
Defined.
Inductive withUnknown (A:Type) :=
| Known (a:A) : withUnknown A
| Unknown : withUnknown A.
Arguments Unknown [A].
Arguments Known [A] a.
Instance withUnknown_eq_dec A `{EqDec A eq} : EqDec (withUnknown A) eq.
Proof.
hnf. destruct x,y; eauto; try dec_solve.
destruct (H a a0); try dec_solve.
hnf in e. subst. left; eauto.
Qed.
Inductive withUnknown_eq A R `{EqDec A R} : withUnknown A → withUnknown A → Prop :=
| WithUnknownEq_refl a b : R a b → withUnknown_eq (Known a) (Known b)
| WithUnknownEq_top : withUnknown_eq Unknown Unknown.
Smpl Add 100 match goal with
| [ H : Known _ === Known _ |- _ ] ⇒ invc H
| [ H : withUnknown_eq _ _ |- _ ] ⇒ invc H
end : inv_trivial.
Lemma withUnknownEq_refl_sym A `{PartialOrder A} a b
: poEq a b → withUnknown_eq (Known b) (Known a).
Proof.
econstructor. symmetry. eauto.
Qed.
Hint Resolve withUnknownEq_refl_sym.
Instance withUnknown_eq_comp A R `{EqDec A R} (a b:withUnknown A)
: Computable (withUnknown_eq a b).
Proof.
destruct a,b; hnf; eauto using withUnknown_eq.
- decide (a === a0); dec_solve.
- dec_solve.
- dec_solve.
Defined.
Instance withUnknown_eq_equiv A R `{EqDec A R}
: Equivalence (withUnknown_eq (A:=A) (R:=R)).
Proof.
constructor.
- hnf; intros []; eauto using @withUnknown_eq.
econstructor. reflexivity.
- hnf; intros [] []; inversion 1; subst; eauto using @withUnknown_eq.
econstructor. symmetry. eauto.
- hnf; intros [] [] [] X Y; inv X; inv Y; eauto using @withUnknown_eq.
econstructor. etransitivity; eauto.
Qed.
Instance withUnknown_PO A R `{EqDec A R} : PartialOrder (withUnknown A) :=
{
poLe := @withUnknown_eq A R _ _ ;
poEq := @withUnknown_eq A R _ _
}.
Proof.
- eauto.
- hnf; intros; eauto.
Defined.
Instance withUnknown_EqDec A R `{EqDec A R}
: EqDec (withUnknown A) (@withUnknown_eq _ _ _ _).
Proof.
hnf. eapply withUnknown_eq_comp.
Defined.
Inductive withBot (A:Type) :=
| Bot : withBot A
| WBElt (a:A) : withBot A.
Arguments Bot [A].
Arguments WBElt [A] a.
Instance withBot_eq_dec A `{EqDec A eq} : EqDec (withBot A) eq.
Proof.
hnf. destruct x,y; eauto; try dec_solve.
destruct (H a a0); try dec_solve.
hnf in e. subst. left; eauto.
Qed.
Inductive withBot_le A `{PartialOrder A} : withBot A → withBot A → Prop :=
| WithBotLe_refl a b : poLe a b → withBot_le (WBElt a) (WBElt b)
| WithBotLe_bot a : withBot_le Bot a.
Instance withBot_le_dec A `{PartialOrder A} (a b:withBot A) : Computable (withBot_le a b).
Proof.
destruct a,b; hnf; eauto using withBot_le.
- dec_solve.
- decide (poLe a a0); dec_solve.
Defined.
Inductive withBot_eq A `{PartialOrder A} : withBot A → withBot A → Prop :=
| WithBotEq_refl a b : poEq a b → withBot_eq (WBElt a) (WBElt b)
| WithBotEq_bot : withBot_eq Bot Bot.
Lemma withBotEq_refl_sym A `{PartialOrder A} a b
: poEq a b → withBot_eq (WBElt b) (WBElt a).
Proof.
econstructor. symmetry. eauto.
Qed.
Hint Resolve withBotEq_refl_sym.
Instance withBot_eq_comp A `{PartialOrder A} (a b:withBot A)
: Computable (withBot_eq a b).
Proof.
destruct a,b; hnf; eauto using withBot_eq.
- dec_solve.
- dec_solve.
- decide (poEq a a0); dec_solve.
Defined.
Instance withBot_eq_equiv A `{PartialOrder A} : Equivalence (withBot_eq (A:=A)).
Proof.
constructor.
- hnf; intros []; eauto using @withBot_eq.
- hnf; intros [] []; inversion 1; subst; eauto using @withBot_eq.
- hnf; intros [] [] [] X Y; inv X; inv Y; eauto using @withBot_eq.
econstructor. etransitivity; eauto.
Qed.
Lemma withBotLe_refl A `{PartialOrder A}
: ∀ d d' : withBot A, withBot_eq d d' → withBot_le d d'.
Proof.
intros ? ? X; inv X; eauto using withBot_le.
Qed.
Instance withBot_le_trans A `{PartialOrder A}
: Transitive (withBot_le (A:=A)).
Proof.
hnf; intros [] [] [] X Y; inv X; inv Y; eauto using withBot_le.
Qed.
Instance withBot_le_anti A `{PartialOrder A}
: Antisymmetric (withBot A) (withBot_eq (A:=A)) (withBot_le (A:=A)).
Proof.
hnf; intros [] [] X Y; inv X; inv Y; eauto using withBot_eq.
exploit poLe_antisymmetric; eauto.
Qed.
Instance withBot_PO A `{PartialOrder A} : PartialOrder (withBot A) :=
{
poLe := @withBot_le A _;
poEq := @withBot_eq A _
}.
Proof.
- eapply withBotLe_refl.
Defined.
Instance withBot_lower_bounded A `{PartialOrder A} : LowerBounded (withBot A) :=
{
bottom := Bot
}.
Proof.
intros. destruct a; econstructor.
Qed.