semantics.f.weaknorm
Require Import base data.fintype f.types f.fcbvsyntax f.fcbvreduction.
Notation cvl := (vl 0 0).
Notation ctm := (tm 0 0).
Definition L (P : cvl -> Prop) (s : ctm) : Prop :=
exists2 v, red s v & P v.
Definition D : model (cvl -> Prop) (cvl -> Prop) :=
{| Var := id
; Arr := fun U V v =>
if v isn't lam b then False else
forall u, U u -> L V (tm_inst (@tvar 0) (u .: @var 0 0) b)
; All := fun F v =>
if v isn't tlam b then False else
forall P A, L (F P) (tm_inst (A .: @tvar 0) (@var 0 0) b)
|}.
Definition V {m} (A : ty m) (ρ : fin m -> cvl -> Prop) (v : cvl) : Prop :=
@eval _ _ D m ρ A v.
Definition E {m} (A : ty m) (ρ : fin m -> cvl -> Prop) (s : ctm) : Prop :=
L (V A ρ) s.
Lemma V_to_E m (A : ty m) (ρ : fin m -> cvl -> Prop) (s : ctm) (v : cvl) :
red s v -> V A ρ v -> E A ρ s.
Proof. move=> h1 h2. by exists v. Qed.
Lemma V_arr m (A B : ty m) (ρ : fin m -> cvl -> Prop) (b : tm 0 1) :
V (arr A B) ρ (lam b) = forall u, V A ρ u -> E B ρ (tm_inst (@tvar 0) (u .: @var 0 0) b).
Proof. by []. Qed.
Lemma V_all m (A : ty m.+1) (ρ : fin m -> cvl -> Prop) (b : tm 1 0) :
V (all A) ρ (tlam b) = forall P B, E A (P .: ρ) (tm_inst (B .: @tvar 0) (@var 0 0) b).
Proof. by []. Qed.
Lemma V_weaken m (A : ty m) (ρ : fin m -> cvl -> Prop) (P : cvl -> Prop) (s : cvl) :
V (tyrename shift A) (P .: ρ) s = V A ρ s.
Proof. by rewrite/V eval_weaken. Qed.
Lemma V_beta m (A : ty m.+1) (B : ty m) (ρ : fin m -> cvl -> Prop) (s : cvl) :
V (tyinst (B .: @tvar m) A) ρ s = V A (V B ρ .: ρ) s.
Proof. by rewrite/V eval_beta. Qed.
Lemma E_beta m (A : ty m.+1) (B : ty m) (ρ : fin m -> cvl -> Prop) (s : ctm) :
E (tyinst (B .: @tvar m) A) ρ s = E A (V B ρ .: ρ) s.
Proof. rewrite/E; f_equal; fext=> v. exact: V_beta. Qed.
Unset Elimination Schemes.
Inductive tm_has_type {m n} (Γ : fin n -> ty m) : tm m n -> ty m -> Prop :=
| ty_val v A :
vl_has_type Γ v A ->
tm_has_type Γ (val v) A
| ty_app s t A B :
tm_has_type Γ s (arr A B) ->
tm_has_type Γ t A ->
tm_has_type Γ (app s t) B
| ty_tapp s A B :
tm_has_type Γ s (all A) ->
tm_has_type Γ (tapp s B) (tyinst (B .: @tvar _) A)
with vl_has_type {m n} (Γ : fin n -> ty m) : vl m n -> ty m -> Prop :=
| ty_var i :
vl_has_type Γ (var m i) (Γ i)
| ty_lam b A B :
@tm_has_type m n.+1 (A .: Γ) b B ->
vl_has_type Γ (lam b) (arr A B)
| ty_tlam b A :
@tm_has_type m.+1 n (Γ >> tyrename shift) b A ->
vl_has_type Γ (tlam b) (all A).
Set Elimination Schemes.
Scheme tm_has_type_ind := Minimality for tm_has_type Sort Prop
with vl_has_type_ind := Minimality for vl_has_type Sort Prop.
Combined Scheme has_type_ind from tm_has_type_ind, vl_has_type_ind.
Definition Vl_has_type {m n} (Γ : fin n -> ty m) (v : vl m n) (A : ty m) :=
forall (σ : tysubst m 0) (τ : vsubst 0 n 0) (ρ : fin m -> cvl -> Prop),
(forall i, V (Γ i) ρ (τ i)) -> V A ρ (vl_inst σ τ v).
Definition Tm_has_type {m n} (Γ : fin n -> ty m) (s : tm m n) (A : ty m) :=
forall (σ : tysubst m 0) (τ : vsubst 0 n 0) (ρ : fin m -> cvl -> Prop),
(forall i, V (Γ i) ρ (τ i)) -> E A ρ (tm_inst σ τ s).
Theorem fundamental m n (Γ : fin n -> ty m) :
(forall (t : tm m n) (A : ty m), tm_has_type Γ t A -> Tm_has_type Γ t A) /\
(forall (v : vl m n) (A : ty m), vl_has_type Γ v A -> Vl_has_type Γ v A).
Proof with eauto using @red.
move: m n Γ. apply: has_type_ind.
- move=> m n Γ v A _ ih σ τ ρ γ /=. apply: V_to_E...
- move=> m n Γ s t A B _ ihs _ iht σ τ ρ γ /=.
case: (ihs σ τ ρ γ) => -[]//b red1. rewrite V_arr => l1.
case: (iht σ τ ρ γ) => u red2 l2.
case: (l1 u l2) => v red3 l3.
apply: V_to_E...
- move=> m n Γ s A B _ ih σ τ ρ γ /=.
case: (ih σ τ ρ γ) => -[]//b red1. rewrite V_all => l1.
case: (l1 (V B ρ) (tyinst σ B)) => v red2 l2.
rewrite E_beta. apply: V_to_E...
- move=> m n Γ i σ τ ρ γ /=. exact: γ.
- move=> m n Γ b A B _ ih σ τ ρ γ. cbn=> u l1.
have->: tm_inst (tvar (n:=0)) (u .: var 0 (n:=0)) (tm_inst σ (vup τ) b) = tm_inst σ (u .: τ) b.
rewrite tm_inst_comp. f_equal. fext=> /=x. by rewrite ty_inst_ids.
fext=>/=-[a|]//=. rewrite vl_ren_inst_comp. fsimpl. exact: vl_inst_ids.
apply: ih => /=; by case.
- move=> m n Γ b A _ ih σ τ ρ γ. cbn=> P B.
have->:
tm_inst (B .: tvar (n:=0)) (var 0 (n:=0)) (tm_inst (tup σ) (τ >> vl_rename shift id) b) =
tm_inst (B .: σ) τ b.
rewrite tm_inst_comp. f_equal. fext=>/=-[a|]//=. rewrite ty_ren_inst_comp; fsimpl.
exact: ty_inst_ids. fext=>/=x. rewrite vl_ren_inst_comp. fsimpl. exact: vl_inst_ids.
apply: ih => i /=. rewrite V_weaken. exact: γ.
Qed.
Corollary weak_normalization (s : ctm) (A : ty 0) :
tm_has_type null s A -> exists v : cvl, red s v.
Proof.
case: (@fundamental 0 0 null) => H _ /H/(_ (@tvar 0) (@var 0 0) null).
case/(_ _) => // v. rewrite tm_inst_ids => red1 _. by exists v.
Qed.
Notation cvl := (vl 0 0).
Notation ctm := (tm 0 0).
Definition L (P : cvl -> Prop) (s : ctm) : Prop :=
exists2 v, red s v & P v.
Definition D : model (cvl -> Prop) (cvl -> Prop) :=
{| Var := id
; Arr := fun U V v =>
if v isn't lam b then False else
forall u, U u -> L V (tm_inst (@tvar 0) (u .: @var 0 0) b)
; All := fun F v =>
if v isn't tlam b then False else
forall P A, L (F P) (tm_inst (A .: @tvar 0) (@var 0 0) b)
|}.
Definition V {m} (A : ty m) (ρ : fin m -> cvl -> Prop) (v : cvl) : Prop :=
@eval _ _ D m ρ A v.
Definition E {m} (A : ty m) (ρ : fin m -> cvl -> Prop) (s : ctm) : Prop :=
L (V A ρ) s.
Lemma V_to_E m (A : ty m) (ρ : fin m -> cvl -> Prop) (s : ctm) (v : cvl) :
red s v -> V A ρ v -> E A ρ s.
Proof. move=> h1 h2. by exists v. Qed.
Lemma V_arr m (A B : ty m) (ρ : fin m -> cvl -> Prop) (b : tm 0 1) :
V (arr A B) ρ (lam b) = forall u, V A ρ u -> E B ρ (tm_inst (@tvar 0) (u .: @var 0 0) b).
Proof. by []. Qed.
Lemma V_all m (A : ty m.+1) (ρ : fin m -> cvl -> Prop) (b : tm 1 0) :
V (all A) ρ (tlam b) = forall P B, E A (P .: ρ) (tm_inst (B .: @tvar 0) (@var 0 0) b).
Proof. by []. Qed.
Lemma V_weaken m (A : ty m) (ρ : fin m -> cvl -> Prop) (P : cvl -> Prop) (s : cvl) :
V (tyrename shift A) (P .: ρ) s = V A ρ s.
Proof. by rewrite/V eval_weaken. Qed.
Lemma V_beta m (A : ty m.+1) (B : ty m) (ρ : fin m -> cvl -> Prop) (s : cvl) :
V (tyinst (B .: @tvar m) A) ρ s = V A (V B ρ .: ρ) s.
Proof. by rewrite/V eval_beta. Qed.
Lemma E_beta m (A : ty m.+1) (B : ty m) (ρ : fin m -> cvl -> Prop) (s : ctm) :
E (tyinst (B .: @tvar m) A) ρ s = E A (V B ρ .: ρ) s.
Proof. rewrite/E; f_equal; fext=> v. exact: V_beta. Qed.
Unset Elimination Schemes.
Inductive tm_has_type {m n} (Γ : fin n -> ty m) : tm m n -> ty m -> Prop :=
| ty_val v A :
vl_has_type Γ v A ->
tm_has_type Γ (val v) A
| ty_app s t A B :
tm_has_type Γ s (arr A B) ->
tm_has_type Γ t A ->
tm_has_type Γ (app s t) B
| ty_tapp s A B :
tm_has_type Γ s (all A) ->
tm_has_type Γ (tapp s B) (tyinst (B .: @tvar _) A)
with vl_has_type {m n} (Γ : fin n -> ty m) : vl m n -> ty m -> Prop :=
| ty_var i :
vl_has_type Γ (var m i) (Γ i)
| ty_lam b A B :
@tm_has_type m n.+1 (A .: Γ) b B ->
vl_has_type Γ (lam b) (arr A B)
| ty_tlam b A :
@tm_has_type m.+1 n (Γ >> tyrename shift) b A ->
vl_has_type Γ (tlam b) (all A).
Set Elimination Schemes.
Scheme tm_has_type_ind := Minimality for tm_has_type Sort Prop
with vl_has_type_ind := Minimality for vl_has_type Sort Prop.
Combined Scheme has_type_ind from tm_has_type_ind, vl_has_type_ind.
Definition Vl_has_type {m n} (Γ : fin n -> ty m) (v : vl m n) (A : ty m) :=
forall (σ : tysubst m 0) (τ : vsubst 0 n 0) (ρ : fin m -> cvl -> Prop),
(forall i, V (Γ i) ρ (τ i)) -> V A ρ (vl_inst σ τ v).
Definition Tm_has_type {m n} (Γ : fin n -> ty m) (s : tm m n) (A : ty m) :=
forall (σ : tysubst m 0) (τ : vsubst 0 n 0) (ρ : fin m -> cvl -> Prop),
(forall i, V (Γ i) ρ (τ i)) -> E A ρ (tm_inst σ τ s).
Theorem fundamental m n (Γ : fin n -> ty m) :
(forall (t : tm m n) (A : ty m), tm_has_type Γ t A -> Tm_has_type Γ t A) /\
(forall (v : vl m n) (A : ty m), vl_has_type Γ v A -> Vl_has_type Γ v A).
Proof with eauto using @red.
move: m n Γ. apply: has_type_ind.
- move=> m n Γ v A _ ih σ τ ρ γ /=. apply: V_to_E...
- move=> m n Γ s t A B _ ihs _ iht σ τ ρ γ /=.
case: (ihs σ τ ρ γ) => -[]//b red1. rewrite V_arr => l1.
case: (iht σ τ ρ γ) => u red2 l2.
case: (l1 u l2) => v red3 l3.
apply: V_to_E...
- move=> m n Γ s A B _ ih σ τ ρ γ /=.
case: (ih σ τ ρ γ) => -[]//b red1. rewrite V_all => l1.
case: (l1 (V B ρ) (tyinst σ B)) => v red2 l2.
rewrite E_beta. apply: V_to_E...
- move=> m n Γ i σ τ ρ γ /=. exact: γ.
- move=> m n Γ b A B _ ih σ τ ρ γ. cbn=> u l1.
have->: tm_inst (tvar (n:=0)) (u .: var 0 (n:=0)) (tm_inst σ (vup τ) b) = tm_inst σ (u .: τ) b.
rewrite tm_inst_comp. f_equal. fext=> /=x. by rewrite ty_inst_ids.
fext=>/=-[a|]//=. rewrite vl_ren_inst_comp. fsimpl. exact: vl_inst_ids.
apply: ih => /=; by case.
- move=> m n Γ b A _ ih σ τ ρ γ. cbn=> P B.
have->:
tm_inst (B .: tvar (n:=0)) (var 0 (n:=0)) (tm_inst (tup σ) (τ >> vl_rename shift id) b) =
tm_inst (B .: σ) τ b.
rewrite tm_inst_comp. f_equal. fext=>/=-[a|]//=. rewrite ty_ren_inst_comp; fsimpl.
exact: ty_inst_ids. fext=>/=x. rewrite vl_ren_inst_comp. fsimpl. exact: vl_inst_ids.
apply: ih => i /=. rewrite V_weaken. exact: γ.
Qed.
Corollary weak_normalization (s : ctm) (A : ty 0) :
tm_has_type null s A -> exists v : cvl, red s v.
Proof.
case: (@fundamental 0 0 null) => H _ /H/(_ (@tvar 0) (@var 0 0) null).
case/(_ _) => // v. rewrite tm_inst_ids => red1 _. by exists v.
Qed.