Lvc.IL.StateType
Require Import List.
Require Export Events.
Set Implicit Arguments.
Definition reducible2 :=
fun (X Y : Type) (R : X→Y→X→Prop) (x : X) ⇒ ∃ y x', R x y x'.
Definition normal2 :=
fun (X Y : Type) (R : X→Y→X→Prop) (x : X) ⇒ ¬ reducible2 R x.
Definition reddec2 :=
fun (X Y : Type) (R : X→Y→X→Prop) ⇒ ∀ x : X, reducible2 R x ∨ normal2 R x.
Definition internally_deterministic {X : Type} (R : X → event → X → Prop)
:= ∀ x y x1 x2, R x EvtTau x1 → R x y x2 → x1 = x2 ∧ y = EvtTau.
Definition externally_determined {X : Type} (R : X → event → X → Prop)
:= ∀ x e x1 x2, R x e x1 → R x e x2 → x1 = x2.
Class StateType S := {
step : S → event → S → Prop;
result : S → option val;
step_dec : reddec2 step;
step_internally_deterministic : internally_deterministic step;
step_externally_determined : externally_determined step
}.
Definition stateType S (ST:StateType S) := S.
Coercion stateType : StateType >-> Sortclass.
Require Export Events.
Set Implicit Arguments.
Definition reducible2 :=
fun (X Y : Type) (R : X→Y→X→Prop) (x : X) ⇒ ∃ y x', R x y x'.
Definition normal2 :=
fun (X Y : Type) (R : X→Y→X→Prop) (x : X) ⇒ ¬ reducible2 R x.
Definition reddec2 :=
fun (X Y : Type) (R : X→Y→X→Prop) ⇒ ∀ x : X, reducible2 R x ∨ normal2 R x.
Definition internally_deterministic {X : Type} (R : X → event → X → Prop)
:= ∀ x y x1 x2, R x EvtTau x1 → R x y x2 → x1 = x2 ∧ y = EvtTau.
Definition externally_determined {X : Type} (R : X → event → X → Prop)
:= ∀ x e x1 x2, R x e x1 → R x e x2 → x1 = x2.
Class StateType S := {
step : S → event → S → Prop;
result : S → option val;
step_dec : reddec2 step;
step_internally_deterministic : internally_deterministic step;
step_externally_determined : externally_determined step
}.
Definition stateType S (ST:StateType S) := S.
Coercion stateType : StateType >-> Sortclass.