Lvc.Infra.Util
Require Export List SetoidList Omega AutoIndTac Computable.
Set Implicit Arguments.
Set Regular Subst Tactic.
Tactic Notation "inv" hyp(A) := inversion A; subst.
Tactic Notation "invc" hyp(A) := inversion A; subst; clear A.
Tactic Notation "invs" hyp(A) := inversion A; subst; clear_trivial_eqs.
Tactic Notation "invcs" hyp(A) := inversion A; subst; clear A; clear_trivial_eqs.
Tactic Notation "dcr" :=
repeat (
match goal with
| H: _ |- _ ⇒ progress (decompose record H); clear H
end).
Inductive protected (P:Prop) :=
Protected (p:P) : protected P.
Lemma protect (P:Prop) : P → protected P.
intros. econstructor. eauto.
Qed.
Lemma unprotect (P:Prop) : protected P → P.
inversion 1; eauto.
Qed.
Tactic Notation "protect" hyp(H) := apply protect in H.
Tactic Notation "unprotect" hyp(H) := apply unprotect in H.
Ltac invt ty :=
match goal with
| h: ty |- _ ⇒ inv h
| h: ty _ |- _ ⇒ inv h
| h: ty _ _ |- _ ⇒ inv h
| h: ty _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ _ _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ _ _ _ _ _ |- _ ⇒ inv h
end.
Ltac invts ty :=
match goal with
| h: ty |- _ ⇒ invs h
| h: ty _ |- _ ⇒ invs h
| h: ty _ _ |- _ ⇒ invs h
| h: ty _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ _ _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ _ _ _ _ _ |- _ ⇒ invs h
end.
Definition iffT (A B : Type) := ((A → B) × (B → A))%type.
Notation "A <=> B" := (iffT A B) (at level 95, no associativity) : type_scope.
Class Defaulted (V:Type) := {
default_el : V
}.
Ltac eq e := assert e; eauto; subst; trivial.
Ltac crush := intros; subst; simpl in *; solve [
eauto
| contradiction
| match goal with [H : ?s |- _] ⇒ now(inversion H; eauto) end
| (constructor; eauto)
| (constructor 2; eauto)
| (constructor 3; eauto)
| intuition
].
Tactic Notation "You are here" := fail.
Set Implicit Arguments.
Set Regular Subst Tactic.
Tactic Notation "inv" hyp(A) := inversion A; subst.
Tactic Notation "invc" hyp(A) := inversion A; subst; clear A.
Tactic Notation "invs" hyp(A) := inversion A; subst; clear_trivial_eqs.
Tactic Notation "invcs" hyp(A) := inversion A; subst; clear A; clear_trivial_eqs.
Tactic Notation "dcr" :=
repeat (
match goal with
| H: _ |- _ ⇒ progress (decompose record H); clear H
end).
Inductive protected (P:Prop) :=
Protected (p:P) : protected P.
Lemma protect (P:Prop) : P → protected P.
intros. econstructor. eauto.
Qed.
Lemma unprotect (P:Prop) : protected P → P.
inversion 1; eauto.
Qed.
Tactic Notation "protect" hyp(H) := apply protect in H.
Tactic Notation "unprotect" hyp(H) := apply unprotect in H.
Ltac invt ty :=
match goal with
| h: ty |- _ ⇒ inv h
| h: ty _ |- _ ⇒ inv h
| h: ty _ _ |- _ ⇒ inv h
| h: ty _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ _ _ _ _ |- _ ⇒ inv h
| h: ty _ _ _ _ _ _ _ _ _ |- _ ⇒ inv h
end.
Ltac invts ty :=
match goal with
| h: ty |- _ ⇒ invs h
| h: ty _ |- _ ⇒ invs h
| h: ty _ _ |- _ ⇒ invs h
| h: ty _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ _ _ _ _ |- _ ⇒ invs h
| h: ty _ _ _ _ _ _ _ _ _ |- _ ⇒ invs h
end.
Definition iffT (A B : Type) := ((A → B) × (B → A))%type.
Notation "A <=> B" := (iffT A B) (at level 95, no associativity) : type_scope.
Class Defaulted (V:Type) := {
default_el : V
}.
Ltac eq e := assert e; eauto; subst; trivial.
Ltac crush := intros; subst; simpl in *; solve [
eauto
| contradiction
| match goal with [H : ?s |- _] ⇒ now(inversion H; eauto) end
| (constructor; eauto)
| (constructor 2; eauto)
| (constructor 3; eauto)
| intuition
].
Tactic Notation "You are here" := fail.
Require Import Basics Containers.Tactics Morphisms Morphisms_Prop.
Lemma bool_extensionality (x y:bool)
: (x → y) → (y → x) → x = y.
Proof.
destruct x,y; intros; eauto. destruct H; eapply I. destruct H0; eapply I.
Qed.
Lemma toImpl (A B: Prop)
: (A → B) → impl A B.
Proof.
eauto.
Qed.
Ltac bool_to_prop_assumption H :=
match goal with
| [ H : context [Is_true (?x && ?y)] |- _ ]
⇒ rewrite (toImpl (@andb_prop_elim x y)) in H
| [ H : context [Is_true (?x || ?y)] |- _ ]
⇒ rewrite (toImpl (@orb_prop_elim x y)) in H
| [ H : Is_true (false) |- _ ] ⇒ inv H
| [ H : context [not (?t)] |- _ ] ⇒
match t with
| context [Is_true (?x && ?y)] ⇒
rewrite <- (toImpl (@andb_prop_intro x y)) in H
| context [Is_true (?x || ?y)] ⇒
rewrite <- (toImpl (@orb_prop_intro x y)) in H
| context [Is_true (negb ?x)] ⇒
rewrite <- (toImpl (@negb_prop_intro x)) in H
end
| [ H : context [Is_true (negb ?x)] |- _ ]
⇒ rewrite (toImpl (@negb_prop_elim x)) in H
| _ ⇒ fail
end.
Lemma true_prop_intro
: Is_true (true) = True.
Proof.
eauto.
Qed.
Lemma false_prop_intro
: Is_true (false) = False.
Proof.
eauto.
Qed.
Ltac bool_to_prop_goal :=
match goal with
| [ _ : _ |- context [Is_true (?x && ?y)] ]
⇒ rewrite <- (toImpl (@andb_prop_intro x y))
| [ _ : _ |- context [not (Is_true (?x && ?y))] ]
⇒ rewrite (toImpl (@andb_prop_elim x y))
| [ _ : _ |- context [Is_true (?x || ?y)] ]
⇒ rewrite <- (toImpl (@orb_prop_intro x y))
| [ _ : _ |- context [not (Is_true (?x || ?y))] ]
⇒ rewrite (toImpl (@orb_prop_elim x y))
| [ _ : _ |- context [Is_true (negb ?x)] ]
⇒ rewrite <- (toImpl (@negb_prop_intro x))
| [ _ : _ |- context [Is_true (true)] ]
⇒ rewrite true_prop_intro
| [ _ : _ |- context [Is_true (false)] ]
⇒ rewrite false_prop_intro
| _ ⇒ fail
end.
Tactic Notation "bool_to_prop" :=
repeat bool_to_prop_goal.
Tactic Notation "bool_to_prop" "in" hyp (H) :=
repeat (bool_to_prop_assumption H).
Tactic Notation "bool_to_prop" "in" "*" :=
repeat (match goal with
| [ H : _ |- _ ] ⇒ bool_to_prop in H
end).
Ltac destr_assumption H :=
repeat match goal with
| [ H : _ ∧ _ |- _ ] ⇒ destruct H
end.
Ltac destr :=
intros; repeat match goal with
| |- _ ∧ _ ⇒ split
end.
Tactic Notation "destr" "in" hyp(H) :=
destr_assumption H.
Tactic Notation "destr" "in" "*" :=
repeat (match goal with
| [ H : _ |- _ ] ⇒ destr in H
end).
Tactic Notation "beq_to_prop" :=
match goal with
| [ H : ?Q = true |- Is_true ?Q] ⇒ rewrite H; eapply I
| [ H : Is_true ?Q |- ?Q = true] ⇒ destruct Q; try destruct H; reflexivity
| [ H : Is_true ?Q, H' : ?Q = false |- _ ] ⇒ rewrite H' in H; destruct H
| [ H : Is_true ?Q |- not ((?Q) = false) ] ⇒ let X:= fresh "H" in
intro X; rewrite X in H; destruct H
| [ H : ?Q = false |- not (Is_true (?Q)) ] ⇒ rewrite H; cbv; trivial
| [ H : ?Q, H' : not (?Q) |- _ ] ⇒ exfalso; apply H'; apply H
| [ H : not (?Q = false) |- Is_true (?Q) ] ⇒
destruct Q; solve [ apply I | exfalso; eapply H; trivial ]
| |- Is_true true ⇒ eapply I
| [ H : not (Is_true (?Q)) |- ?Q = false ] ⇒
destruct Q; solve [ exfalso; eapply H; eapply I | reflexivity ]
end.
Tactic Notation "cbool" :=
simpl in *; bool_to_prop in *; destr in *; bool_to_prop; destr; beq_to_prop.
Tactic Notation "orewrite" constr(A) :=
let X := fresh "OX" in assert A as X by omega; rewrite X; clear X.
Tactic Notation "orewrite" constr(A) "in" hyp(H) :=
let X := fresh "OX" in assert A as X by omega; rewrite X in H; clear X.
Ltac on_last_hyp tac :=
match goal with [ H : _ |- _ ] ⇒ first [ tac H | fail 1 ] end.
Ltac revert_until id :=
on_last_hyp ltac:(fun id' ⇒
match id' with
| id ⇒ idtac
| _ ⇒ revert id' ; revert_until id
end).
Tactic Notation "simplify" "if" :=
match goal with
| [ H : Is_true (?P) |- context [if ?P then _ else _]] ⇒
let X := fresh in assert (P = true) as X by cbool; rewrite X; clear X
| [ H : not (Is_true (?P)) |- context [if ?P then _ else _]] ⇒
let X := fresh in assert (P = false) as X by cbool; rewrite X; clear X
end.
Tactic Notation "simplify" "if" "in" "*" :=
match goal with
| [ H : Is_true (?P), H' : context [if ?P then _ else _] |- _ ] ⇒
let X := fresh in assert (P = true) as X by cbool; rewrite X in H'; clear X
| [ H : not (Is_true (?P)), H' : context [if ?P then _ else _] |- _ ] ⇒
let X := fresh in assert (P = false) as X by cbool; rewrite X in H'; clear X
end.
Ltac eqassumption :=
match goal with
| [ H : ?C ?t |- ?C ?t' ] ⇒
let X := fresh in
cut (C t' = C t);
[ rewrite X; apply H |
f_equal; try congruence ]
| [ H : ?C ?t1 ?t2 |- ?C ?t1' ?t2' ] ⇒
let X := fresh in
cut (C t1' t2' = C t1 t2);
[ intros X; rewrite X; apply H |
f_equal; try congruence ]
| [ H : ?C ?t1 ?t2 ?t3 |- ?C ?t1' ?t2' ?t3' ] ⇒
let X := fresh in
cut (C t1' t2' t3' = C t1 t2 t3);
[ intros X; rewrite X; apply H |
f_equal; try congruence ]
| [ H : ?C ?t1 ?t2 ?t3 ?t4 |- ?C ?t1' ?t2' ?t3' ?t4' ] ⇒
let X := fresh in
cut (C t1' t2' t3' t4' = C t1 t2 t3 t4);
[ intros X; rewrite X; apply H |
f_equal; try congruence ]
end.
Definition fresh {X} `{Equivalence X} (x:X) (Y:list X) : Prop :=
¬InA R x Y.
Fixpoint unique X `{Equivalence X} (Y:list X) : Prop :=
match Y with
| nil ⇒ True
| cons x Y' ⇒ ¬InA R x Y' ∧ unique Y'
end.
Lemma unique_decons X (R : relation X) (H : Equivalence R) x L
: unique (x::L) → unique L.
Proof.
intros [A B]; eapply B.
Qed.
Hint Resolve unique_decons.
Ltac let_case_eq :=
match goal with
| [ H : context [let (_, _) := ?e in _] |- _ ] ⇒
let a := fresh "a" in let b := fresh "b" in let eq := fresh "eq" in
case_eq e; intros a b eq; rewrite eq in H
end.
Ltac let_pair_case_eq :=
match goal with
| [ |- context [let (_, _) := ?e in _] ] ⇒ case_eq e; intros
| [ H : ?x = (?s, ?t) |- _ ] ⇒
assert (fst x = s) by (rewrite H; eauto);
assert (snd x = t) by (rewrite H; eauto); clear H
end.
Ltac simpl_pair_eqs :=
match goal with
| [ H : ?P = (?x, ?y) |- _ ] ⇒ assert (fst P = x) by (rewrite H; eauto);
assert (snd P = y) by (rewrite H; eauto); clear H
| [ H : (?x, ?y) = ?P |- _ ] ⇒ assert (fst P = x) by (rewrite <- H; eauto);
assert (snd P = y) by (rewrite <- H; eauto); clear H
end.
Ltac scofix :=
repeat match goal with
[H : _ |- _] ⇒
match H with
| _ ⇒ revert H
end
end; cofix; intros.
Lemma modus_ponens P Q
: P → (P → Q) → Q.
tauto.
Defined.
Tactic Notation "exploiT" tactic(tac) :=
eapply modus_ponens;[ tac | intros].
Ltac exploit H :=
eapply modus_ponens;
[
let H' := fresh "exploitH" in
pose proof H as H'; hnf in H';
eapply H'; clear H'
| intros].
Tactic Notation "exploiT" constr(ty) :=
match goal with
| H: ty |- _ ⇒ exploit H
| H: ty _ |- _ ⇒ exploit H
| H: ty _ _ |- _ ⇒ exploit H
| H: ty _ _ _ |- _ ⇒ exploit H
| H: ty _ _ _ _ |- _ ⇒ exploit H
| H: ty _ _ _ _ _ |- _ ⇒ exploit H
| H: ty _ _ _ _ _ _ |- _ ⇒ exploit H
| H: ty _ _ _ _ _ _ _ |- _ ⇒ exploit H
| H: ty _ _ _ _ _ _ _ _ |- _ ⇒ exploit H
| H: ty _ _ _ _ _ _ _ _ _ |- _ ⇒ exploit H
end.
Ltac exploit2 H H' :=
eapply modus_ponens;
[
let H' := fresh "exploitH" in
pose proof H as H'; hnf in H';
eapply H'; clear H'
| intros H'].
Tactic Notation "exploit" uconstr(X) := exploit X.
Tactic Notation "exploit" uconstr(X) "as" ident(H) := exploit2 X H.
Definition foo A B C := (A → ¬ B ∨ C).
Lemma test (A B C D : Prop) (a:A) (b:B)
: foo A B C
→ (C → D)
→ D.
Proof.
intros. exploiT foo. eauto. exploit H. eauto. firstorder.
Qed.
Fixpoint iter A n (s:A) (f: A → A) :=
match n with
| 0 ⇒ s
| S n ⇒ iter n (f s) f
end.
Lemma iter_comm n A (a:A) (f:A → A)
: iter (S n) a f = f (iter n a f).
Proof.
general induction n.
- simpl; eauto.
- change (iter (S (S n)) a f) with (iter (S n) (f a) f).
rewrite IHn; eauto.
Qed.
Require Le Arith.Compare_dec.
Instance le_comp (a b: nat) : Computable (lt a b).
eapply Arith.Compare_dec.lt_dec.
Defined.
Hint Extern 20 ⇒ match goal with
| [ H: ?a ∧ ?b |- ?b ] ⇒ eapply H
| [ H: ?a ∧ ?b |- ?a ] ⇒ eapply H
end.
Instance plus_le_morpism
: Proper (Peano.le ==> Peano.le ==> Peano.le) Peano.plus.
Proof.
unfold Proper, respectful.
intros. omega.
Qed.
Instance plus_S_morpism
: Proper (Peano.le ==> Peano.le) S.
Proof.
unfold Proper, respectful.
intros. omega.
Qed.
Instance le_lt_morph
: Proper (Peano.ge ==> Peano.le ==> impl) Peano.lt.
Proof.
unfold Proper, respectful, impl; intros; try omega.
Qed.
Instance le_lt_morph'
: Proper (eq ==> Peano.le ==> impl) Peano.lt.
Proof.
unfold Proper, respectful, flip, impl; intros; try omega.
Qed.
Instance le_lt_morph''
: Proper (Peano.le ==> eq ==> flip impl) Peano.lt.
Proof.
unfold Proper, respectful, flip, impl; intros; try omega.
Qed.
Lemma length_map_2 X Y Z (L:list X) (L':list Y) (f:Y→Z)
: length L = length L'
→ length L = length (List.map f L').
Proof.
intros. rewrite map_length; eauto.
Qed.
Lemma length_map_1 X Y Z (L:list Y) (L':list X) (f:Y→Z)
: length L = length L'
→ length (List.map f L) = length L'.
Proof.
intros. rewrite map_length; eauto.
Qed.
Create HintDb len discriminated.
Hint Resolve length_map_1 length_map_2 : len.
Lemma rev_swap X (L L':list X)
: rev L = L'
→ L = rev L'.
Proof.
intros. subst. rewrite rev_involutive; eauto.
Qed.
Inductive already_swapped (P:Prop) := AlreadySwapped.
Lemma mark_swapped P : already_swapped P.
Proof.
constructor.
Qed.
Hint Extern 1000 ⇒
match goal with
| [ H : already_swapped (?a = ?b) |- ?a = ?b ] ⇒ fail 1
| [ |- ?a = ?b ] ⇒ eapply eq_sym; pose proof (mark_swapped (a = b))
end : len.
Hint Immediate eq_trans : len.
Hint Immediate eq_sym : len.
Hint Extern 10 ⇒
match goal with
[ H : ?a = ?b, H': ?b = ?c |- ?c = ?a ] ⇒ eapply eq_sym; eapply (eq_trans H H')
end : len.
Lemma map_length_ass_both X X' Y Y' (L:list X) (L':list Y) (f:X→X') (g:Y→Y')
: length L = length L'
→ length (List.map f L) = length (List.map g L').
Proof.
repeat rewrite map_length; eauto.
Qed.
Lemma app_length_ass_both X Y (L1 L2:list X) (L1' L2':list Y)
: length L1 = length L1'
→ length L2 = length L2'
→ length (L1 ++ L2) = length (L1' ++ L2').
Proof.
repeat rewrite app_length; eauto.
Qed.
Hint Resolve map_length_ass_both app_length_ass_both | 2 : len.
Lemma app_length_ass X (L:list X) L' k
: length L + length L' = k
→ length (L ++ L') = k.
Proof.
intros; subst. rewrite app_length; eauto.
Qed.
Lemma app_length_ass_right X (L:list X) L' k
: length L + length L' = k
→ k = length (L ++ L').
Proof.
intros; subst. rewrite app_length; eauto.
Qed.
Lemma map_length_ass X Y (L:list X) (f:X→Y) k
: length L = k
→ length (List.map f L) = k.
Proof.
intros; subst. rewrite map_length; eauto.
Qed.
Lemma map_length_ass_right X Y (L:list X) (f:X→Y) k
: length L = k
→ k = length (List.map f L).
Proof.
intros; subst. rewrite map_length; eauto.
Qed.
Lemma length_tl X (l:list X)
: length (tl l) = length l - 1.
Proof.
destruct l; simpl; eauto; omega.
Qed.
Lemma pair_eta (X Y:Type) (p:X × Y)
: p = (fst p, snd p).
Proof.
destruct p; eauto.
Qed.
Hint Resolve map_length_ass app_length_ass | 4 : len.
Notation "❬ L ❭" := (length L) (at level 9, format "'❬' L '❭'").
Notation "f ⊝ L" := (List.map f L) (at level 50, L at level 50, left associativity).
Notation "'tab' s '‖' L '‖'" := (List.map (fun _ ⇒ s) L)
(at level 50, format "'tab' s '‖' L '‖'", s at level 0, L at level 200).
Notation "〔 X 〕" := (list X) (format "'〔' X '〕'") : type_scope.
Notation "؟" := option.
Lemma len_le_app X Y Z (A:list X) (B:list Y) (C D:list Z) n
: n < length B
→ length A = length (C ++ D)
→ length B = length C
→ n < length A.
Proof.
intros LE EQ1 EQ2. rewrite EQ1. rewrite app_length. omega.
Qed.
Hint Resolve len_le_app : len.
Lemma map_length_lt_ass_right X Y (L:list X) (f:X→Y) k
: k < length L
→ k < length (List.map f L).
Proof.
intros; subst. rewrite map_length; eauto.
Qed.
Hint Resolve map_length_lt_ass_right : len.
Hint Extern 10 ⇒
match goal with
| [ H : length ?A = length ?B, H' : ?n < length ?B |- ?n < length ?A] ⇒
rewrite H; eapply H'
| [ H : length ?B = length ?A, H' : ?n < length ?B |- ?n < length ?A] ⇒
rewrite <- H; eapply H'
end : len.
Lemma length_le_plus X Y (A:list X) (B:list Y) k
: length A = length B
→ length A ≤ length B + k.
Proof.
omega.
Qed.
Hint Resolve length_le_plus : len.
Instance instance_impl_2 x
: Proper (impl ==> impl) (impl x).
Proof.
unfold Proper, respectful, impl. intros.
eauto.
Qed.
Instance instance_impl_3
: Proper (impl --> impl ==> impl) impl.
Proof.
unfold Proper, respectful, impl, flip. intros.
eauto.
Qed.
Lemma size_induction (X : Type) (f : X → nat) (p: X →Prop) (x : X)
: (∀ x, (∀ y, f y < f x → p y) → p x) → p x.
Proof.
intros A. apply A.
induction (f x); intros y B.
exfalso; omega.
apply A. intros z C. apply IHn. omega.
Qed.
Definition size_recursion (X : Type) (f : X → nat) (p: X → Type) (x : X)
: (∀ x, (∀ y, f y < f x → p y) → p x) → p x.
Proof.
intros A. apply A.
induction (f x); intros y B.
exfalso; destruct (f y); inv B.
apply A. intros z C. apply IHn. cbv in B,C. cbv.
inv B. assumption. eapply le_S in C. eapply le_trans; eauto.
Defined.
Ltac simpl_minus :=
repeat match goal with
| [ H : context [?n - ?n] |- _ ]
⇒ orewrite (n - n = 0) in H
end.
Hint Extern 5 (Is_true true) ⇒ eapply I.
Instance map_m_eq A B
: Proper (@pointwise_relation A B eq ==> eq ==> eq) (@List.map A B).
Proof.
unfold Proper, respectful, pointwise_relation; intros; subst.
eapply map_ext; eauto.
Qed.
Instance app_m_eq A
: Proper (eq ==> eq ==> eq) (@app A).
Proof.
unfold Proper, respectful; intros; subst; eauto.
Qed.
Lemma app_length_le_ass X (L:list X) L' k
: length L + length L' ≤ k
→ length (L ++ L') ≤ k.
Proof.
intros; subst. rewrite app_length; eauto.
Qed.
Lemma app_length_le_ass_right X (L:list X) L' k
: k ≤ length L + length L'
→ k ≤ length (L ++ L').
Proof.
intros; subst. rewrite app_length; eauto.
Qed.
Lemma map_length_le_ass X Y (L:list X) (f:X→Y) k
: length L ≤ k
→ length (List.map f L) ≤ k.
Proof.
intros; subst. rewrite map_length; eauto.
Qed.
Lemma map_length_le_ass_right X Y (L:list X) (f:X→Y) k
: k ≤ length L
→ k ≤ length (List.map f L).
Proof.
intros; subst. rewrite map_length; eauto.
Qed.
Hint Resolve app_length_le_ass app_length_le_ass_right map_length_le_ass map_length_le_ass_right
: len.
Lemma min_idempotent_ass n m k
: n = k
→ n = m
→ min n m = k.
Proof.
intros. repeat subst. eapply Nat.min_idempotent.
Qed.
Hint Resolve min_idempotent_ass : len.
Definition impb (a b:bool) : Prop := if a then b else True.
Instance impb_refl : Reflexive impb.
Proof.
hnf; destruct x; simpl; eauto.
Qed.
Instance impb_trans : Transitive impb.
Proof.
hnf; intros [] [] []; eauto.
Qed.
Hint Extern 5 (impb ?a ?a') ⇒
progress (first [has_evar a | has_evar a' | reflexivity]).
Hint Extern 5 ⇒
match goal with
[ H : impb ?a ?b, H' : impb ?b ?c |- impb ?a ?c ] ⇒
etransitivity; [ eapply H | eapply H' ]
end.
Instance Is_true_impb
: Proper (impb ==> impl) Is_true.
Proof.
unfold Proper, respectful; intros.
destruct x,y; simpl in *; hnf; eauto.
Qed.
Lemma impb_eq (a b:bool)
: impb a b
→ impb b a
→ a = b.
Proof.
destruct a, b; simpl; intros; eauto.
exfalso; eauto.
Qed.
Ltac destr_sig H :=
match type of H with
| context [proj1_sig ?x] ⇒ destruct x; simpl in H
end.
Tactic Notation "destr_sig" :=
match goal with
| [ |- context [proj1_sig (proj1_sig ?x)] ] ⇒ destruct x; simpl
| [ |- context [proj1_sig ?x] ] ⇒ destruct x; simpl
end.
Lemma minus_zero_eq n
: n - 0 = n.
Proof.
omega.
Qed.
Hint Resolve minus_zero_eq.
Hint Resolve min_l min_r : len.
Hint Extern 5 ⇒
match goal with
| [ H : Is_true ?B, EQ : ?A = ?B |- Is_true ?A] ⇒ rewrite EQ; eapply H
| [ H : Is_true ?B, EQ : ?B = ?A |- Is_true ?A] ⇒ rewrite <- EQ; eapply H
end.
Hint Resolve Is_true_eq_true Is_true_eq_left Is_true_eq_right.
Instance ge_computable a b : Computable (a ≥ b).
Proof.
eapply ge_dec.
Qed.