Lvc.paco.paconotation
Definition rel0 :=
Prop.
Implicit Arguments rel0 [].
Definition rel1 T0 :=
∀ (x0: T0), Prop.
Implicit Arguments rel1 [].
Definition rel2 T0 T1 :=
∀ (x0: T0) (x1: T1 x0), Prop.
Implicit Arguments rel2 [].
Definition rel3 T0 T1 T2 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1), Prop.
Implicit Arguments rel3 [].
Definition rel4 T0 T1 T2 T3 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2), Prop.
Implicit Arguments rel4 [].
Definition rel5 T0 T1 T2 T3 T4 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3), Prop.
Implicit Arguments rel5 [].
Definition rel6 T0 T1 T2 T3 T4 T5 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3) (x5: T5 x0 x1 x2 x3 x4), Prop.
Implicit Arguments rel6 [].
Definition rel7 T0 T1 T2 T3 T4 T5 T6 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3) (x5: T5 x0 x1 x2 x3 x4) (x6: T6 x0 x1 x2 x3 x4 x5), Prop.
Implicit Arguments rel7 [].
Definition rel8 T0 T1 T2 T3 T4 T5 T6 T7 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3) (x5: T5 x0 x1 x2 x3 x4) (x6: T6 x0 x1 x2 x3 x4 x5) (x7: T7 x0 x1 x2 x3 x4 x5 x6), Prop.
Implicit Arguments rel8 [].
Definition rel9 T0 T1 T2 T3 T4 T5 T6 T7 T8 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3) (x5: T5 x0 x1 x2 x3 x4) (x6: T6 x0 x1 x2 x3 x4 x5) (x7: T7 x0 x1 x2 x3 x4 x5 x6) (x8: T8 x0 x1 x2 x3 x4 x5 x6 x7), Prop.
Implicit Arguments rel9 [].
Definition rel10 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3) (x5: T5 x0 x1 x2 x3 x4) (x6: T6 x0 x1 x2 x3 x4 x5) (x7: T7 x0 x1 x2 x3 x4 x5 x6) (x8: T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: T9 x0 x1 x2 x3 x4 x5 x6 x7 x8), Prop.
Implicit Arguments rel10 [].
Definition rel11 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3) (x5: T5 x0 x1 x2 x3 x4) (x6: T6 x0 x1 x2 x3 x4 x5) (x7: T7 x0 x1 x2 x3 x4 x5 x6) (x8: T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: T9 x0 x1 x2 x3 x4 x5 x6 x7 x8) (x10: T10 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9), Prop.
Implicit Arguments rel11 [].
Definition rel12 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3) (x5: T5 x0 x1 x2 x3 x4) (x6: T6 x0 x1 x2 x3 x4 x5) (x7: T7 x0 x1 x2 x3 x4 x5 x6) (x8: T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: T9 x0 x1 x2 x3 x4 x5 x6 x7 x8) (x10: T10 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) (x11: T11 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10), Prop.
Implicit Arguments rel12 [].
Definition rel13 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3) (x5: T5 x0 x1 x2 x3 x4) (x6: T6 x0 x1 x2 x3 x4 x5) (x7: T7 x0 x1 x2 x3 x4 x5 x6) (x8: T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: T9 x0 x1 x2 x3 x4 x5 x6 x7 x8) (x10: T10 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) (x11: T11 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10) (x12: T12 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11), Prop.
Implicit Arguments rel13 [].
Definition rel14 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3) (x5: T5 x0 x1 x2 x3 x4) (x6: T6 x0 x1 x2 x3 x4 x5) (x7: T7 x0 x1 x2 x3 x4 x5 x6) (x8: T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: T9 x0 x1 x2 x3 x4 x5 x6 x7 x8) (x10: T10 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) (x11: T11 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10) (x12: T12 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11) (x13: T13 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12), Prop.
Implicit Arguments rel14 [].
Definition rel15 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 :=
∀ (x0: T0) (x1: T1 x0) (x2: T2 x0 x1) (x3: T3 x0 x1 x2) (x4: T4 x0 x1 x2 x3) (x5: T5 x0 x1 x2 x3 x4) (x6: T6 x0 x1 x2 x3 x4 x5) (x7: T7 x0 x1 x2 x3 x4 x5 x6) (x8: T8 x0 x1 x2 x3 x4 x5 x6 x7) (x9: T9 x0 x1 x2 x3 x4 x5 x6 x7 x8) (x10: T10 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) (x11: T11 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10) (x12: T12 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11) (x13: T13 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12) (x14: T14 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13), Prop.
Implicit Arguments rel15 [].
Definition pacoid {A : Type} (a: A) : A := a.
Notation bot0 :=
(pacoid(False)).
Notation bot1 :=
(pacoid(fun _ ⇒ False)).
Notation bot2 :=
(pacoid(fun _ _ ⇒ False)).
Notation bot3 :=
(pacoid(fun _ _ _ ⇒ False)).
Notation bot4 :=
(pacoid(fun _ _ _ _ ⇒ False)).
Notation bot5 :=
(pacoid(fun _ _ _ _ _ ⇒ False)).
Notation bot6 :=
(pacoid(fun _ _ _ _ _ _ ⇒ False)).
Notation bot7 :=
(pacoid(fun _ _ _ _ _ _ _ ⇒ False)).
Notation bot8 :=
(pacoid(fun _ _ _ _ _ _ _ _ ⇒ False)).
Notation bot9 :=
(pacoid(fun _ _ _ _ _ _ _ _ _ ⇒ False)).
Notation bot10 :=
(pacoid(fun _ _ _ _ _ _ _ _ _ _ ⇒ False)).
Notation bot11 :=
(pacoid(fun _ _ _ _ _ _ _ _ _ _ _ ⇒ False)).
Notation bot12 :=
(pacoid(fun _ _ _ _ _ _ _ _ _ _ _ _ ⇒ False)).
Notation bot13 :=
(pacoid(fun _ _ _ _ _ _ _ _ _ _ _ _ _ ⇒ False)).
Notation bot14 :=
(pacoid(fun _ _ _ _ _ _ _ _ _ _ _ _ _ _ ⇒ False)).
Notation bot15 :=
(pacoid(fun _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ⇒ False)).
Notation "p <0= q" :=
(∀ (PR: p : Prop), q : Prop)
(at level 50, no associativity, only parsing).
Notation "p <1= q" :=
(∀ x0 (PR: p x0 : Prop), q x0 : Prop)
(at level 50, no associativity).
Notation "p <2= q" :=
(∀ x0 x1 (PR: p x0 x1 : Prop), q x0 x1 : Prop)
(at level 50, no associativity).
Notation "p <3= q" :=
(∀ x0 x1 x2 (PR: p x0 x1 x2 : Prop), q x0 x1 x2 : Prop)
(at level 50, no associativity).
Notation "p <4= q" :=
(∀ x0 x1 x2 x3 (PR: p x0 x1 x2 x3 : Prop), q x0 x1 x2 x3 : Prop)
(at level 50, no associativity).
Notation "p <5= q" :=
(∀ x0 x1 x2 x3 x4 (PR: p x0 x1 x2 x3 x4 : Prop), q x0 x1 x2 x3 x4 : Prop)
(at level 50, no associativity).
Notation "p <6= q" :=
(∀ x0 x1 x2 x3 x4 x5 (PR: p x0 x1 x2 x3 x4 x5 : Prop), q x0 x1 x2 x3 x4 x5 : Prop)
(at level 50, no associativity).
Notation "p <7= q" :=
(∀ x0 x1 x2 x3 x4 x5 x6 (PR: p x0 x1 x2 x3 x4 x5 x6 : Prop), q x0 x1 x2 x3 x4 x5 x6 : Prop)
(at level 50, no associativity).
Notation "p <8= q" :=
(∀ x0 x1 x2 x3 x4 x5 x6 x7 (PR: p x0 x1 x2 x3 x4 x5 x6 x7 : Prop), q x0 x1 x2 x3 x4 x5 x6 x7 : Prop)
(at level 50, no associativity).
Notation "p <9= q" :=
(∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 (PR: p x0 x1 x2 x3 x4 x5 x6 x7 x8 : Prop), q x0 x1 x2 x3 x4 x5 x6 x7 x8 : Prop)
(at level 50, no associativity).
Notation "p <10= q" :=
(∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (PR: p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : Prop), q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : Prop)
(at level 50, no associativity).
Notation "p <11= q" :=
(∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 (PR: p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 : Prop), q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 : Prop)
(at level 50, no associativity).
Notation "p <12= q" :=
(∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 (PR: p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 : Prop), q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 : Prop)
(at level 50, no associativity).
Notation "p <13= q" :=
(∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 (PR: p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 : Prop), q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 : Prop)
(at level 50, no associativity).
Notation "p <14= q" :=
(∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 (PR: p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 : Prop), q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 : Prop)
(at level 50, no associativity).
Notation "p <15= q" :=
(∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 (PR: p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 : Prop), q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 : Prop)
(at level 50, no associativity).
Notation "p \0/ q" :=
(p ∨ q)
(at level 50, no associativity, only parsing).
Notation "p \1/ q" :=
(fun x0 ⇒ p x0 ∨ q x0)
(at level 50, no associativity).
Notation "p \2/ q" :=
(fun x0 x1 ⇒ p x0 x1 ∨ q x0 x1)
(at level 50, no associativity).
Notation "p \3/ q" :=
(fun x0 x1 x2 ⇒ p x0 x1 x2 ∨ q x0 x1 x2)
(at level 50, no associativity).
Notation "p \4/ q" :=
(fun x0 x1 x2 x3 ⇒ p x0 x1 x2 x3 ∨ q x0 x1 x2 x3)
(at level 50, no associativity).
Notation "p \5/ q" :=
(fun x0 x1 x2 x3 x4 ⇒ p x0 x1 x2 x3 x4 ∨ q x0 x1 x2 x3 x4)
(at level 50, no associativity).
Notation "p \6/ q" :=
(fun x0 x1 x2 x3 x4 x5 ⇒ p x0 x1 x2 x3 x4 x5 ∨ q x0 x1 x2 x3 x4 x5)
(at level 50, no associativity).
Notation "p \7/ q" :=
(fun x0 x1 x2 x3 x4 x5 x6 ⇒ p x0 x1 x2 x3 x4 x5 x6 ∨ q x0 x1 x2 x3 x4 x5 x6)
(at level 50, no associativity).
Notation "p \8/ q" :=
(fun x0 x1 x2 x3 x4 x5 x6 x7 ⇒ p x0 x1 x2 x3 x4 x5 x6 x7 ∨ q x0 x1 x2 x3 x4 x5 x6 x7)
(at level 50, no associativity).
Notation "p \9/ q" :=
(fun x0 x1 x2 x3 x4 x5 x6 x7 x8 ⇒ p x0 x1 x2 x3 x4 x5 x6 x7 x8 ∨ q x0 x1 x2 x3 x4 x5 x6 x7 x8)
(at level 50, no associativity).
Notation "p \10/ q" :=
(fun x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⇒ p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ∨ q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9)
(at level 50, no associativity).
Notation "p \11/ q" :=
(fun x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ⇒ p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ∨ q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10)
(at level 50, no associativity).
Notation "p \12/ q" :=
(fun x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⇒ p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ∨ q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11)
(at level 50, no associativity).
Notation "p \13/ q" :=
(fun x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⇒ p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ∨ q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12)
(at level 50, no associativity).
Notation "p \14/ q" :=
(fun x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⇒ p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ∨ q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13)
(at level 50, no associativity).
Notation "p \15/ q" :=
(fun x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⇒ p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ∨ q x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14)
(at level 50, no associativity).