Strong normalisation
Section StrongNormalisation.
Variables (X A: Type).
Variables (R: X -> X -> Prop) (S: A -> A -> Prop).
Inductive SN {X} (R: X -> X -> Prop) : X -> Prop :=
| SNC x : (forall y, R x y -> SN R y) -> SN R x.
Lemma SN_ext Q x :
(forall x y, R x y <-> Q x y) ->
SN R x <-> SN Q x.
Proof.
split; induction 1; econstructor; firstorder.
Qed.
Fact SN_unfold x :
SN R x <-> forall y, R x y -> SN R y.
Proof.
split.
- destruct 1 as [x H]. exact H.
- intros H. constructor. exact H.
Qed.
Fact Normal_SN x :
Normal R x -> SN R x.
Proof.
intros H. constructor. intros y H1.
exfalso. eapply H; eauto.
Qed.
Fact Normal_star_stops x:
Normal R x -> forall y, star R x y -> x = y.
Proof.
destruct 2; firstorder.
Qed.
Fact SN_multiple x :
SN R x <-> SN (multiple R) x.
Proof.
split.
- induction 1 as [x _ IH].
constructor. induction 1; eauto.
apply IHmultiple. intros z H1 % multiple_exp.
destruct (IH x' H) as [H2].
apply H3. eauto.
- induction 1 as [x _ IH].
constructor. intros y H1. apply IH. eauto.
Qed.
Definition morphism (f: X -> A) :=
forall x y, R x y -> S (f x) (f y).
Fact SN_morphism f x :
morphism f -> SN S (f x) -> SN R x.
Proof.
intros H H1.
remember (f x) as a eqn:H2. revert x H2.
induction H1 as [a _ IH]. intros x ->.
constructor. intros y H1 % H.
apply (IH _ H1). reflexivity.
Qed.
Fact SN_finite_steps:
(forall x, (exists y, R x y) \/ Normal R x) -> forall x, SN R x -> exists2 y, star R x y & Normal R y.
Proof.
intros H; induction 1 as [x H1 IH]. destruct (H x) as [[y H2]|].
+ edestruct IH as [z H3 H4]; eauto.
+ eexists; eauto.
Qed.
End StrongNormalisation.
Variables (X A: Type).
Variables (R: X -> X -> Prop) (S: A -> A -> Prop).
Inductive SN {X} (R: X -> X -> Prop) : X -> Prop :=
| SNC x : (forall y, R x y -> SN R y) -> SN R x.
Lemma SN_ext Q x :
(forall x y, R x y <-> Q x y) ->
SN R x <-> SN Q x.
Proof.
split; induction 1; econstructor; firstorder.
Qed.
Fact SN_unfold x :
SN R x <-> forall y, R x y -> SN R y.
Proof.
split.
- destruct 1 as [x H]. exact H.
- intros H. constructor. exact H.
Qed.
Fact Normal_SN x :
Normal R x -> SN R x.
Proof.
intros H. constructor. intros y H1.
exfalso. eapply H; eauto.
Qed.
Fact Normal_star_stops x:
Normal R x -> forall y, star R x y -> x = y.
Proof.
destruct 2; firstorder.
Qed.
Fact SN_multiple x :
SN R x <-> SN (multiple R) x.
Proof.
split.
- induction 1 as [x _ IH].
constructor. induction 1; eauto.
apply IHmultiple. intros z H1 % multiple_exp.
destruct (IH x' H) as [H2].
apply H3. eauto.
- induction 1 as [x _ IH].
constructor. intros y H1. apply IH. eauto.
Qed.
Definition morphism (f: X -> A) :=
forall x y, R x y -> S (f x) (f y).
Fact SN_morphism f x :
morphism f -> SN S (f x) -> SN R x.
Proof.
intros H H1.
remember (f x) as a eqn:H2. revert x H2.
induction H1 as [a _ IH]. intros x ->.
constructor. intros y H1 % H.
apply (IH _ H1). reflexivity.
Qed.
Fact SN_finite_steps:
(forall x, (exists y, R x y) \/ Normal R x) -> forall x, SN R x -> exists2 y, star R x y & Normal R y.
Proof.
intros H; induction 1 as [x H1 IH]. destruct (H x) as [[y H2]|].
+ edestruct IH as [z H3 H4]; eauto.
+ eexists; eauto.
Qed.
End StrongNormalisation.