Set Implicit Arguments.
Class Dec (P: Prop) := dec: {P} + {~P}.
Arguments dec _ {_}.
Class Dec1 {X} (p: X -> Prop) := dec1: forall x, Dec (p x).
Arguments dec1 {_} _ {_}.
Class Dec2 {X Y} (p: X -> Y -> Prop) := dec2: forall x, Dec1 (p x).
Arguments dec2 {_} {_} _ {_}.
Instance dec_conj P Q: Dec P -> Dec Q -> Dec (P /\ Q).
Proof.
intros [p|np] [q|nq]; firstorder.
Qed.
Instance dec_disj P Q: Dec P -> Dec Q -> Dec (P \/ Q).
Proof.
intros [p|np] [q|nq]; firstorder.
Qed.
Instance dec_imp P Q: Dec P -> Dec Q -> Dec (P -> Q).
Proof.
intros [p|np] [q|nq]; firstorder.
Qed.
Instance dec_iff P Q: Dec P -> Dec Q -> Dec (P <-> Q).
Proof.
intros; unfold iff; typeclasses eauto.
Qed.
Instance dec_neg P: Dec P -> Dec (~ P).
Proof.
intros [p|np]; firstorder.
Qed.
Lemma iff_dec P Q: Q <-> P -> Dec P -> Dec Q.
Proof. firstorder. Qed.
Instance dec1_dec X P (x: X): Dec1 P -> (Dec (P x)).
Proof. intros H; apply H. Qed.
Instance dec1_conj X (P: X -> Prop) (Q: X -> Prop): Dec1 P -> Dec1 Q -> Dec1 (fun x => P x /\ Q x).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec1_disj X (P: X -> Prop) (Q: X -> Prop): Dec1 P -> Dec1 Q -> Dec1 (fun x => P x \/ Q x).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec1_imp X (P: X -> Prop) (Q: X -> Prop): Dec1 P -> Dec1 Q -> Dec1 (fun x => P x -> Q x).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec1_iff X (P: X -> Prop) (Q: X -> Prop): Dec1 P -> Dec1 Q -> Dec1 (fun x => P x <-> Q x).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec1_neg X (P: X -> Prop): Dec1 P -> Dec1 (fun x => ~ P x).
Proof.
intros Hq x; typeclasses eauto.
Qed.
Instance dec2_dec1 X Y (P: X -> Y -> Prop) x: Dec2 P -> Dec1 (P x).
Proof. intros H; apply H. Qed.
Instance dec2_dec1' X Y (P: X -> Y -> Prop) y: Dec2 P -> Dec1 (fun x => P x y).
Proof. intros H x; apply H. Qed.
Instance dec2_conj X Y (P: X -> Y -> Prop) (Q: X -> Y -> Prop): Dec2 P -> Dec2 Q -> Dec2 (fun x y => P x y /\ Q x y).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec2_disj X Y (P: X -> Y -> Prop) (Q: X -> Y -> Prop): Dec2 P -> Dec2 Q -> Dec2 (fun x y => P x y \/ Q x y).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec2_imp X Y (P: X -> Y -> Prop) (Q: X -> Y -> Prop): Dec2 P -> Dec2 Q -> Dec2 (fun x y => P x y -> Q x y).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec2_iff X Y (P: X -> Y -> Prop) (Q: X -> Y -> Prop): Dec2 P -> Dec2 Q -> Dec2 (fun x y => P x y <-> Q x y).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec2_neg X Y (P: X -> Y -> Prop): Dec2 P -> Dec2 (fun x y => ~ P x y).
Proof.
intros Hq x; typeclasses eauto.
Qed.
Section DecBool.
Definition decb P {D: Dec P} := if dec P then true else false.
Arguments decb _ {_}.
Definition decb1 {X: Type} (Q: X -> Prop) {D: Dec1 Q} x := decb (Q x).
Arguments decb1 {_} _ {_} _.
Definition decb2 {X Y: Type} (R: X -> Y -> Prop) {D: Dec2 R} x := decb1 (R x).
Arguments decb2 {_} {_} _ {_} _.
Lemma dec_decb (P: Prop) {D: Dec P}: P -> decb P = true.
Proof.
unfold decb; destruct (dec P); intuition; discriminate.
Qed.
Lemma decb_dec (P: Prop) {D: Dec P}: decb P = true -> P.
Proof.
unfold decb; destruct (dec P); intuition; discriminate.
Qed.
End DecBool.
Hint Resolve dec_decb.
Arguments decb _ {_}.
Arguments decb1 {_} _ {_} _.
Arguments decb2 {_} {_} _ {_} _.
(* Discreteness *)
Class Dis (X: Type) := eq_dec: Dec2 (@eq X).
Notation "a == b" := (eq_dec a b) (at level 60).
Instance dis_dec X (D: Dis X): Dec2 (@eq X).
Proof. firstorder. Qed.
Instance discrete_False: Dis False.
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
Qed.
Instance discrete_unit: Dis unit.
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
Qed.
Instance discrete_nat: Dis nat.
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
Qed.
Instance discrete_bool: Dis bool.
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
Qed.
Instance discrete_option (X: Type) {D: Dis X}: Dis (option X).
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
eapply eq_dec.
Qed.
Instance discrete_sum (X Y: Type) {D1: Dis X} {D2: Dis Y}: Dis (X + Y).
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
all: eapply eq_dec.
Qed.
Instance discrete_prod (X Y: Type) {D1: Dis X} {D2: Dis Y}: Dis (X * Y).
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
all: eapply eq_dec.
Qed.
Instance discrete_list (X: Type) {D: Dis X}: Dis (list X).
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
eapply eq_dec.
Qed.
Require Import List Omega.
Instance In_dec (X: Type) {D: Dis X}: Dec2 (@In X).
Proof.
intros ??; eapply in_dec, eq_dec.
Qed.
Definition dec_in {X: Type} {D: Dis X} (x: X) (A: list X) :=
dec2 (@In X) x A.
Notation "x 'el' A" := (dec_in x A) (at level 60).
Instance lt_dec : Dec2 lt.
Proof.
intros ??; eapply lt_dec.
Qed.
Instance le_dec : Dec2 le.
Proof.
intros ??; eapply le_dec.
Qed.
Instance gt_dec : Dec2 gt.
Proof.
intros ??; eapply lt_dec.
Qed.
Instance ge_dec : Dec2 ge.
Proof.
intros ??; eapply le_dec.
Qed.
Instance dec_all Y (P: Y -> Prop) (D: Dec1 P):
Dec1 (fun A => forall x, In x A -> P x).
Proof.
intros A. eapply iff_dec; [symmetry; eapply Forall_forall|].
unfold Dec; eapply Forall_dec; eauto.
Qed.
Class Dec (P: Prop) := dec: {P} + {~P}.
Arguments dec _ {_}.
Class Dec1 {X} (p: X -> Prop) := dec1: forall x, Dec (p x).
Arguments dec1 {_} _ {_}.
Class Dec2 {X Y} (p: X -> Y -> Prop) := dec2: forall x, Dec1 (p x).
Arguments dec2 {_} {_} _ {_}.
Instance dec_conj P Q: Dec P -> Dec Q -> Dec (P /\ Q).
Proof.
intros [p|np] [q|nq]; firstorder.
Qed.
Instance dec_disj P Q: Dec P -> Dec Q -> Dec (P \/ Q).
Proof.
intros [p|np] [q|nq]; firstorder.
Qed.
Instance dec_imp P Q: Dec P -> Dec Q -> Dec (P -> Q).
Proof.
intros [p|np] [q|nq]; firstorder.
Qed.
Instance dec_iff P Q: Dec P -> Dec Q -> Dec (P <-> Q).
Proof.
intros; unfold iff; typeclasses eauto.
Qed.
Instance dec_neg P: Dec P -> Dec (~ P).
Proof.
intros [p|np]; firstorder.
Qed.
Lemma iff_dec P Q: Q <-> P -> Dec P -> Dec Q.
Proof. firstorder. Qed.
Instance dec1_dec X P (x: X): Dec1 P -> (Dec (P x)).
Proof. intros H; apply H. Qed.
Instance dec1_conj X (P: X -> Prop) (Q: X -> Prop): Dec1 P -> Dec1 Q -> Dec1 (fun x => P x /\ Q x).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec1_disj X (P: X -> Prop) (Q: X -> Prop): Dec1 P -> Dec1 Q -> Dec1 (fun x => P x \/ Q x).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec1_imp X (P: X -> Prop) (Q: X -> Prop): Dec1 P -> Dec1 Q -> Dec1 (fun x => P x -> Q x).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec1_iff X (P: X -> Prop) (Q: X -> Prop): Dec1 P -> Dec1 Q -> Dec1 (fun x => P x <-> Q x).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec1_neg X (P: X -> Prop): Dec1 P -> Dec1 (fun x => ~ P x).
Proof.
intros Hq x; typeclasses eauto.
Qed.
Instance dec2_dec1 X Y (P: X -> Y -> Prop) x: Dec2 P -> Dec1 (P x).
Proof. intros H; apply H. Qed.
Instance dec2_dec1' X Y (P: X -> Y -> Prop) y: Dec2 P -> Dec1 (fun x => P x y).
Proof. intros H x; apply H. Qed.
Instance dec2_conj X Y (P: X -> Y -> Prop) (Q: X -> Y -> Prop): Dec2 P -> Dec2 Q -> Dec2 (fun x y => P x y /\ Q x y).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec2_disj X Y (P: X -> Y -> Prop) (Q: X -> Y -> Prop): Dec2 P -> Dec2 Q -> Dec2 (fun x y => P x y \/ Q x y).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec2_imp X Y (P: X -> Y -> Prop) (Q: X -> Y -> Prop): Dec2 P -> Dec2 Q -> Dec2 (fun x y => P x y -> Q x y).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec2_iff X Y (P: X -> Y -> Prop) (Q: X -> Y -> Prop): Dec2 P -> Dec2 Q -> Dec2 (fun x y => P x y <-> Q x y).
Proof.
intros Hp Hq x; typeclasses eauto.
Qed.
Instance dec2_neg X Y (P: X -> Y -> Prop): Dec2 P -> Dec2 (fun x y => ~ P x y).
Proof.
intros Hq x; typeclasses eauto.
Qed.
Section DecBool.
Definition decb P {D: Dec P} := if dec P then true else false.
Arguments decb _ {_}.
Definition decb1 {X: Type} (Q: X -> Prop) {D: Dec1 Q} x := decb (Q x).
Arguments decb1 {_} _ {_} _.
Definition decb2 {X Y: Type} (R: X -> Y -> Prop) {D: Dec2 R} x := decb1 (R x).
Arguments decb2 {_} {_} _ {_} _.
Lemma dec_decb (P: Prop) {D: Dec P}: P -> decb P = true.
Proof.
unfold decb; destruct (dec P); intuition; discriminate.
Qed.
Lemma decb_dec (P: Prop) {D: Dec P}: decb P = true -> P.
Proof.
unfold decb; destruct (dec P); intuition; discriminate.
Qed.
End DecBool.
Hint Resolve dec_decb.
Arguments decb _ {_}.
Arguments decb1 {_} _ {_} _.
Arguments decb2 {_} {_} _ {_} _.
(* Discreteness *)
Class Dis (X: Type) := eq_dec: Dec2 (@eq X).
Notation "a == b" := (eq_dec a b) (at level 60).
Instance dis_dec X (D: Dis X): Dec2 (@eq X).
Proof. firstorder. Qed.
Instance discrete_False: Dis False.
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
Qed.
Instance discrete_unit: Dis unit.
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
Qed.
Instance discrete_nat: Dis nat.
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
Qed.
Instance discrete_bool: Dis bool.
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
Qed.
Instance discrete_option (X: Type) {D: Dis X}: Dis (option X).
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
eapply eq_dec.
Qed.
Instance discrete_sum (X Y: Type) {D1: Dis X} {D2: Dis Y}: Dis (X + Y).
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
all: eapply eq_dec.
Qed.
Instance discrete_prod (X Y: Type) {D1: Dis X} {D2: Dis Y}: Dis (X * Y).
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
all: eapply eq_dec.
Qed.
Instance discrete_list (X: Type) {D: Dis X}: Dis (list X).
Proof.
unfold Dis, Dec2, Dec1, Dec; decide equality.
eapply eq_dec.
Qed.
Require Import List Omega.
Instance In_dec (X: Type) {D: Dis X}: Dec2 (@In X).
Proof.
intros ??; eapply in_dec, eq_dec.
Qed.
Definition dec_in {X: Type} {D: Dis X} (x: X) (A: list X) :=
dec2 (@In X) x A.
Notation "x 'el' A" := (dec_in x A) (at level 60).
Instance lt_dec : Dec2 lt.
Proof.
intros ??; eapply lt_dec.
Qed.
Instance le_dec : Dec2 le.
Proof.
intros ??; eapply le_dec.
Qed.
Instance gt_dec : Dec2 gt.
Proof.
intros ??; eapply lt_dec.
Qed.
Instance ge_dec : Dec2 ge.
Proof.
intros ??; eapply le_dec.
Qed.
Instance dec_all Y (P: Y -> Prop) (D: Dec1 P):
Dec1 (fun A => forall x, In x A -> P x).
Proof.
intros A. eapply iff_dec; [symmetry; eapply Forall_forall|].
unfold Dec; eapply Forall_dec; eauto.
Qed.