Notation symbol := bool.
Notation word := (list symbol).
Notation card := (word * word)%type.
Notation stack := (list card).
Notation hd := fst.
Notation tl := snd.
Notation heads S := (map hd S).
Notation tails S := (map tl S).
Definition PCP (S: list card) :=
exists (I: list nat), I ⊆ nats (|S|) /\ I <> nil /\
concat (select I (heads S)) = concat (select I (tails S)).
Definition MPCP '(c, C) :=
exists (I: list nat), I ⊆ nats (1 + |C|)
/\ hd c ++ @concat symbol (select I (heads (c :: C))) = tl c ++ concat (select I (tails (c :: C))).
Definition PCPsimp (C: list card) :=
exists (C': stack), C' ⊆ C /\ C' <> nil /\ concat (heads C') = concat (tails C').
Definition MPCPsimp '(c, C) :=
exists (C': stack), C' ⊆ c :: C /\ hd c ++ concat (heads C') = tl c ++ concat (tails C').
(* ** Equivalences *)
Section PCPEquivalence.
Hint Resolve nth_error_Some_lt nth_error_lt_Some nats_lt lt_nats.
Lemma incl_select_iff X (A B: list X):
A ⊆ B <-> exists I, I ⊆ nats (length B) /\ select I B = A.
Proof.
split.
- now intros ? % incl_select.
- intros [I [? <-]]; eapply select_incl.
Qed.
Lemma PCPsimp_PCP C:
PCPsimp C <-> PCP C.
Proof.
split.
+ intros [C' H]. rewrite incl_select_iff in H.
destruct H as ((I & ? & ?) & ? & ?); subst.
exists I. rewrite <-!select_map; intuition.
subst; cbn in *; intuition.
+ intros (I & H). exists (select I C). rewrite incl_select_iff.
intuition eauto.
destruct I; intuition. cbn in H1. specialize (H0 n); mp H0; lauto.
eapply nats_lt, nth_error_lt_Some in H0 as [? ?].
rewrite H0 in H1; discriminate.
rewrite !select_map; intuition.
Qed.
Lemma MPCPsimp_MPCP c C:
MPCPsimp (c,C) <-> MPCP (c,C).
Proof.
split.
+ intros [C' H]. rewrite incl_select_iff in H.
destruct H as ((I & ? & ?) & ?); subst.
exists I. rewrite <-!select_map; intuition.
+ intros (I & H). exists (select I (c :: C)). rewrite incl_select_iff.
intuition eauto. rewrite !select_map; intuition.
Qed.
End PCPEquivalence.
Notation word := (list symbol).
Notation card := (word * word)%type.
Notation stack := (list card).
Notation hd := fst.
Notation tl := snd.
Notation heads S := (map hd S).
Notation tails S := (map tl S).
Definition PCP (S: list card) :=
exists (I: list nat), I ⊆ nats (|S|) /\ I <> nil /\
concat (select I (heads S)) = concat (select I (tails S)).
Definition MPCP '(c, C) :=
exists (I: list nat), I ⊆ nats (1 + |C|)
/\ hd c ++ @concat symbol (select I (heads (c :: C))) = tl c ++ concat (select I (tails (c :: C))).
Definition PCPsimp (C: list card) :=
exists (C': stack), C' ⊆ C /\ C' <> nil /\ concat (heads C') = concat (tails C').
Definition MPCPsimp '(c, C) :=
exists (C': stack), C' ⊆ c :: C /\ hd c ++ concat (heads C') = tl c ++ concat (tails C').
(* ** Equivalences *)
Section PCPEquivalence.
Hint Resolve nth_error_Some_lt nth_error_lt_Some nats_lt lt_nats.
Lemma incl_select_iff X (A B: list X):
A ⊆ B <-> exists I, I ⊆ nats (length B) /\ select I B = A.
Proof.
split.
- now intros ? % incl_select.
- intros [I [? <-]]; eapply select_incl.
Qed.
Lemma PCPsimp_PCP C:
PCPsimp C <-> PCP C.
Proof.
split.
+ intros [C' H]. rewrite incl_select_iff in H.
destruct H as ((I & ? & ?) & ? & ?); subst.
exists I. rewrite <-!select_map; intuition.
subst; cbn in *; intuition.
+ intros (I & H). exists (select I C). rewrite incl_select_iff.
intuition eauto.
destruct I; intuition. cbn in H1. specialize (H0 n); mp H0; lauto.
eapply nats_lt, nth_error_lt_Some in H0 as [? ?].
rewrite H0 in H1; discriminate.
rewrite !select_map; intuition.
Qed.
Lemma MPCPsimp_MPCP c C:
MPCPsimp (c,C) <-> MPCP (c,C).
Proof.
split.
+ intros [C' H]. rewrite incl_select_iff in H.
destruct H as ((I & ? & ?) & ?); subst.
exists I. rewrite <-!select_map; intuition.
+ intros (I & H). exists (select I (c :: C)). rewrite incl_select_iff.
intuition eauto. rewrite !select_map; intuition.
Qed.
End PCPEquivalence.