(* The code of this file is included with Autosubst 2 *)
(* considered preliminaries *)
Require Import std.
Require Export axioms.
Definition fin := nat.
Definition shift := S.
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
fun n => match n with
|0 => x
|S n => xi n
end.
Notation "s .: sigma" := (scons s sigma) (at level 67, right associativity).
Definition var_zero := 0.
Definition up_ren (xi : nat -> nat) :=
0 .: (xi >> S).
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [|x].
- reflexivity.
- unfold up_ren. simpl. unfold funcomp. rewrite <- E. reflexivity.
Qed.
Definition id {X} (x: X) := x.
Lemma scons_eta {T} (f : nat -> T) :
f var_zero .: shift >> f = f.
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_eta_id {n : nat} : var_zero .: shift = id :> (nat -> nat).
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_comp (T: Type) U (s: T) (sigma: nat -> T) (tau: T -> U ) :
(s .: sigma) >> tau = scons (tau s) (sigma >> tau) .
Proof.
fext. intros [|x]; reflexivity.
Qed.
Ltac fsimpl :=
unfold up_ren; repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context[(?f >> ?g) >> ?h]] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h)) (* AsimplComp *)
| [|- context[(?s.:?sigma) var_zero]] => change ((s.:sigma)var_zero) with s
| [|- context[(?f >> ?g) >> ?h]] =>
change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[?f >> (?x .: ?g)]] =>
change (f >> (x .: g)) with g
| [|- context[var_zero]] => change var_zero with 0
| [|- context[?x2 .: shift >> ?f]] =>
change x2 with (f 0); rewrite (@scons_eta _ _ f)
| [|- context[(?v .: ?g) 0]] =>
change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] =>
change ((v .: g) (S n)) with (g n)
| [|- context[?f 0 .: ?g]] =>
change g with (shift >> f); rewrite scons_eta
| _ => first [progress (rewrite ?scons_comp) | progress (rewrite ?scons_eta_id)]
end.
Ltac fsimplin H :=
unfold up_ren in H; repeat match type of H with
| context[id >> ?f] => change (id >> f) with f in H (* AsimplCompIdL *)
| context[?f >> id] => change (f >> id) with f in H (* AsimplCompIdR *)
| context[(?f >> ?g) >> ?h] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h)) in H (* AsimplComp *)
| context[(?s.:?sigma) var_zero] => change ((s.:sigma)var_zero) with s in H
| context[(?f >> ?g) >> ?h] =>
change ((f >> g) >> h) with (f >> (g >> h)) in H
| context[?f >> (?x .: ?g)] =>
change (f >> (x .: g)) with g in H
| context[var_zero] => change var_zero with 0 in H
| context[?x2 .: shift >> ?f] =>
change x2 with (f 0) in H; rewrite (@scons_eta _ _ f) in H
| context[(?v .: ?g) 0] =>
change ((v .: g) 0) with v in H
| context[(?v .: ?g) (S ?n)] =>
change ((v .: g) (S n)) with (g n) in H
| context[?f 0 .: ?g] =>
change g with (shift >> f) in H; rewrite scons_eta in H
| _ => first [progress (rewrite ?scons_comp in H) | progress (rewrite ?scons_eta_id in H)]
end.
(* considered preliminaries *)
Require Import std.
Require Export axioms.
Definition fin := nat.
Definition shift := S.
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
fun n => match n with
|0 => x
|S n => xi n
end.
Notation "s .: sigma" := (scons s sigma) (at level 67, right associativity).
Definition var_zero := 0.
Definition up_ren (xi : nat -> nat) :=
0 .: (xi >> S).
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [|x].
- reflexivity.
- unfold up_ren. simpl. unfold funcomp. rewrite <- E. reflexivity.
Qed.
Definition id {X} (x: X) := x.
Lemma scons_eta {T} (f : nat -> T) :
f var_zero .: shift >> f = f.
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_eta_id {n : nat} : var_zero .: shift = id :> (nat -> nat).
Proof. fext. intros [|x]; reflexivity. Qed.
Lemma scons_comp (T: Type) U (s: T) (sigma: nat -> T) (tau: T -> U ) :
(s .: sigma) >> tau = scons (tau s) (sigma >> tau) .
Proof.
fext. intros [|x]; reflexivity.
Qed.
Ltac fsimpl :=
unfold up_ren; repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context[(?f >> ?g) >> ?h]] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h)) (* AsimplComp *)
| [|- context[(?s.:?sigma) var_zero]] => change ((s.:sigma)var_zero) with s
| [|- context[(?f >> ?g) >> ?h]] =>
change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[?f >> (?x .: ?g)]] =>
change (f >> (x .: g)) with g
| [|- context[var_zero]] => change var_zero with 0
| [|- context[?x2 .: shift >> ?f]] =>
change x2 with (f 0); rewrite (@scons_eta _ _ f)
| [|- context[(?v .: ?g) 0]] =>
change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] =>
change ((v .: g) (S n)) with (g n)
| [|- context[?f 0 .: ?g]] =>
change g with (shift >> f); rewrite scons_eta
| _ => first [progress (rewrite ?scons_comp) | progress (rewrite ?scons_eta_id)]
end.
Ltac fsimplin H :=
unfold up_ren in H; repeat match type of H with
| context[id >> ?f] => change (id >> f) with f in H (* AsimplCompIdL *)
| context[?f >> id] => change (f >> id) with f in H (* AsimplCompIdR *)
| context[(?f >> ?g) >> ?h] =>
change ((?f >> ?g) >> ?h) with (f >> (g >> h)) in H (* AsimplComp *)
| context[(?s.:?sigma) var_zero] => change ((s.:sigma)var_zero) with s in H
| context[(?f >> ?g) >> ?h] =>
change ((f >> g) >> h) with (f >> (g >> h)) in H
| context[?f >> (?x .: ?g)] =>
change (f >> (x .: g)) with g in H
| context[var_zero] => change var_zero with 0 in H
| context[?x2 .: shift >> ?f] =>
change x2 with (f 0) in H; rewrite (@scons_eta _ _ f) in H
| context[(?v .: ?g) 0] =>
change ((v .: g) 0) with v in H
| context[(?v .: ?g) (S ?n)] =>
change ((v .: g) (S n)) with (g n) in H
| context[?f 0 .: ?g] =>
change g with (shift >> f) in H; rewrite scons_eta in H
| _ => first [progress (rewrite ?scons_comp in H) | progress (rewrite ?scons_eta_id in H)]
end.