Require Export NuTree.
Fixpoint NuNumber nt : nat :=
match nt with
| Tr _ l => list_sum (List.map NuNumber l)
| Nu _ x => S ( NuNumber x)
end.
Fact no_nus_nu_number_z nt :
NoNus nt -> NuNumber nt = 0.
Proof.
induction 1 as [a l H1 H2]. simpl. apply list_sum_zero.
intros x [s [<- H3]] % in_map_iff. apply H2, H3.
Qed.
Fact no_nus_nu_number_z' nt :
Ntwr nt -> NoNus nt <-> NuNumber nt = 0.
Proof.
intros HW1. split.
- apply no_nus_nu_number_z.
- intros H1. induction HW1.
+ constructor. intros x H3. apply H0; trivial.
simpl in H1. rewrite list_sum_zero in H1. apply H1, in_map_iff. eauto.
+ simpl in H1. discriminate H1.
Qed.
(*
Embedding Tree in NuTree
*)
Fixpoint t_to_nt t : NuTree :=
match t with TrA a l => Tr a (map t_to_nt l) end.
Notation "'%' t" := (t_to_nt t) (at level 65).
Fact pure_no_nus t :
Twr t -> NoNus (% t).
Proof.
induction 1 as [a l H1 H2 _]. simpl. constructor.
intros x [s [<- H3]] % in_map_iff. apply H2, H3.
Qed.
(* The number of nu nodes in a pure wellranked tree is zero *)
Fact pure_nu_number_z t :
Twr t -> NuNumber (% t) = 0.
Proof.
now intros H1 % pure_no_nus % no_nus_nu_number_z.
Qed.
Lemma t_to_nt_in l n :
n el map t_to_nt l -> exists t, t el l /\ n = % t.
Proof.
rewrite in_map_iff. intros [t [H2 H3]]. now exists t.
Qed.
(*
The translation of a wellranked tree to a nu-tree is also wellranked
*)
Fact twr_ntwr t :
Twr t -> Ntwr (% t).
Proof.
induction 1 as [a l H1 H2 H3]. simpl. constructor; try now rewrite map_length.
intros s [s' [H4 ->]] % t_to_nt_in. apply H2, H4.
Qed.
(*
When translating a tree t into a nu-tree, t is in the language of the translation
*)
Fact ntl_refl t A:
Twr t -> t El [% t] A.
Proof.
intros H1. revert A. induction H1 as [a l _ H3 _]. intros A.
constructor; fold t_to_nt; auto using map_length.
intros k H5. rewrite map_length in H5.
assert(H6: nth k l (DTR) el l) by apply nth_In, H5.
rewrite nth_indep with (d':= % DTR). rewrite map_nth.
apply (H3 (nth k l (DTR)) H6). now rewrite map_length.
Qed.
Section Equality.
Variable n : NuTree.
Variable n' : NuTree.
Hypothesis HW1 : Ntwr n.
Hypothesis HW2 : Ntwr n'.
(* Deciding equality on wellranked nu-trees *)
Inductive Nteq : NuTree -> NuTree -> Prop :=
| NteqA a l l' : |l| = |l'| -> |l| = rk a -> (forall k, k < |l| -> Nteq (nth k l DNT) (nth k l' DNT)) -> Nteq (Tr a l) (Tr a l')
| NteqB a n n' : Nteq n n' -> Nteq (Nu a n) (Nu a n').
Fixpoint nt_eq n n' : bool :=
match n, n' with
| Tr a l, Tr b l' =>
if Dec (a=b)
then all_true (map_pw (map nt_eq l) l')
else false
| Nu a m, Nu b m' =>
if Dec (a=b)
then nt_eq m m'
else false
| _, _ => false
end.
Fact nt_eq_correct_1 :
nt_eq n n' = true -> n = n'.
Proof.
revert HW2. revert n'.
induction HW1 as [a l H1 H2| a n H1 H2]; intros n' HW2;
induction HW2 as [b l' H4 H5| b n' H4 H5]; simpl; try discriminate 1;
decide (a=b) as [E|]; try discriminate 1; subst b.
- rewrite all_true_map_pw_map with (x:=DNT)(y:=DNT); try congruence.
intros H6. f_equal. apply plist_eq with (x:=DNT); try congruence. intros k H7. apply H2; auto. apply H4, nth_In. congruence.
- intros H6. f_equal. apply H2; auto.
Qed.
Fact nt_eq_correct_2 :
n = n' -> nt_eq n n' = true.
Proof.
intros. subst n'. induction HW1; simpl; decide (a=a) as [_|]; auto.
rewrite all_true_map_pw_map with (x:=DNT)(y:=DNT); auto.
Qed.
Fact nt_eq_correct :
nt_eq n n' = true <-> n = n'.
Proof.
split; eauto using nt_eq_correct_1, nt_eq_correct_2.
Qed.
Instance nt_eq_dec :
dec(n = n').
Proof.
destruct (nt_eq n n') eqn:E.
- left. apply nt_eq_correct; assumption.
- right. intros H3. apply nt_eq_correct in H3; try assumption. congruence.
Qed.
End Equality.
Fixpoint NuNumber nt : nat :=
match nt with
| Tr _ l => list_sum (List.map NuNumber l)
| Nu _ x => S ( NuNumber x)
end.
Fact no_nus_nu_number_z nt :
NoNus nt -> NuNumber nt = 0.
Proof.
induction 1 as [a l H1 H2]. simpl. apply list_sum_zero.
intros x [s [<- H3]] % in_map_iff. apply H2, H3.
Qed.
Fact no_nus_nu_number_z' nt :
Ntwr nt -> NoNus nt <-> NuNumber nt = 0.
Proof.
intros HW1. split.
- apply no_nus_nu_number_z.
- intros H1. induction HW1.
+ constructor. intros x H3. apply H0; trivial.
simpl in H1. rewrite list_sum_zero in H1. apply H1, in_map_iff. eauto.
+ simpl in H1. discriminate H1.
Qed.
(*
Embedding Tree in NuTree
*)
Fixpoint t_to_nt t : NuTree :=
match t with TrA a l => Tr a (map t_to_nt l) end.
Notation "'%' t" := (t_to_nt t) (at level 65).
Fact pure_no_nus t :
Twr t -> NoNus (% t).
Proof.
induction 1 as [a l H1 H2 _]. simpl. constructor.
intros x [s [<- H3]] % in_map_iff. apply H2, H3.
Qed.
(* The number of nu nodes in a pure wellranked tree is zero *)
Fact pure_nu_number_z t :
Twr t -> NuNumber (% t) = 0.
Proof.
now intros H1 % pure_no_nus % no_nus_nu_number_z.
Qed.
Lemma t_to_nt_in l n :
n el map t_to_nt l -> exists t, t el l /\ n = % t.
Proof.
rewrite in_map_iff. intros [t [H2 H3]]. now exists t.
Qed.
(*
The translation of a wellranked tree to a nu-tree is also wellranked
*)
Fact twr_ntwr t :
Twr t -> Ntwr (% t).
Proof.
induction 1 as [a l H1 H2 H3]. simpl. constructor; try now rewrite map_length.
intros s [s' [H4 ->]] % t_to_nt_in. apply H2, H4.
Qed.
(*
When translating a tree t into a nu-tree, t is in the language of the translation
*)
Fact ntl_refl t A:
Twr t -> t El [% t] A.
Proof.
intros H1. revert A. induction H1 as [a l _ H3 _]. intros A.
constructor; fold t_to_nt; auto using map_length.
intros k H5. rewrite map_length in H5.
assert(H6: nth k l (DTR) el l) by apply nth_In, H5.
rewrite nth_indep with (d':= % DTR). rewrite map_nth.
apply (H3 (nth k l (DTR)) H6). now rewrite map_length.
Qed.
Section Equality.
Variable n : NuTree.
Variable n' : NuTree.
Hypothesis HW1 : Ntwr n.
Hypothesis HW2 : Ntwr n'.
(* Deciding equality on wellranked nu-trees *)
Inductive Nteq : NuTree -> NuTree -> Prop :=
| NteqA a l l' : |l| = |l'| -> |l| = rk a -> (forall k, k < |l| -> Nteq (nth k l DNT) (nth k l' DNT)) -> Nteq (Tr a l) (Tr a l')
| NteqB a n n' : Nteq n n' -> Nteq (Nu a n) (Nu a n').
Fixpoint nt_eq n n' : bool :=
match n, n' with
| Tr a l, Tr b l' =>
if Dec (a=b)
then all_true (map_pw (map nt_eq l) l')
else false
| Nu a m, Nu b m' =>
if Dec (a=b)
then nt_eq m m'
else false
| _, _ => false
end.
Fact nt_eq_correct_1 :
nt_eq n n' = true -> n = n'.
Proof.
revert HW2. revert n'.
induction HW1 as [a l H1 H2| a n H1 H2]; intros n' HW2;
induction HW2 as [b l' H4 H5| b n' H4 H5]; simpl; try discriminate 1;
decide (a=b) as [E|]; try discriminate 1; subst b.
- rewrite all_true_map_pw_map with (x:=DNT)(y:=DNT); try congruence.
intros H6. f_equal. apply plist_eq with (x:=DNT); try congruence. intros k H7. apply H2; auto. apply H4, nth_In. congruence.
- intros H6. f_equal. apply H2; auto.
Qed.
Fact nt_eq_correct_2 :
n = n' -> nt_eq n n' = true.
Proof.
intros. subst n'. induction HW1; simpl; decide (a=a) as [_|]; auto.
rewrite all_true_map_pw_map with (x:=DNT)(y:=DNT); auto.
Qed.
Fact nt_eq_correct :
nt_eq n n' = true <-> n = n'.
Proof.
split; eauto using nt_eq_correct_1, nt_eq_correct_2.
Qed.
Instance nt_eq_dec :
dec(n = n').
Proof.
destruct (nt_eq n n') eqn:E.
- left. apply nt_eq_correct; assumption.
- right. intros H3. apply nt_eq_correct in H3; try assumption. congruence.
Qed.
End Equality.