Library ProgrammingTuringMachines.TM.Combinators.Switch
Section Switch.
Variable n : nat.
Variable sig : finType.
Variable F : finType.
Variable pM1 : pTM sig F n.
Variable F' : finType.
Variable pMf : F -> pTM sig F' n.
The (unlabelled) machine M
The labelling function of the machine M
The (unlabelled) case-machine M' y
The labelling function of the case-machine M' y
Notation "'p2' y" := (projT2 (pMf y)) (at level 10).
Definition Switch_trans :
(TM.states M1 + { f : F & TM.states (Mf f) }) * Vector.t (option sig) n ->
(TM.states M1 + { f : F & TM.states (Mf f) }) * Vector.t (option sig * move) n :=
fun '(q, s) =>
match q with
| inl q =>
if halt q
then (inr (existT _ (p1 q) (start (Mf (p1 q)))), nop_action)
else let (q', a) := trans (q, s) in (inl q', a)
| inr q =>
let (q', a) := trans (projT2 q, s) in
(inr (existT _ (projT1 q) q'), a)
end.
Definition Switch_halt : (TM.states M1 + { f : F & TM.states (Mf f) }) -> bool :=
fun q =>
match q with
| inl _ => false
| inr q => halt (projT2 q)
end.
Definition SwitchTM : mTM sig n :=
{|
trans := Switch_trans;
halt := Switch_halt;
start := inl (start M1);
|}.
Definition Switch_p : (states SwitchTM) -> F' :=
fun q => match q with
| inl q => p2 (p1 q) (start (Mf (p1 q))) (* Canonical value *)
| inr q => p2 (projT1 q) (projT2 q)
end.
Definition Switch : pTM sig F' n := (SwitchTM; Switch_p).
Definition Switch_trans :
(TM.states M1 + { f : F & TM.states (Mf f) }) * Vector.t (option sig) n ->
(TM.states M1 + { f : F & TM.states (Mf f) }) * Vector.t (option sig * move) n :=
fun '(q, s) =>
match q with
| inl q =>
if halt q
then (inr (existT _ (p1 q) (start (Mf (p1 q)))), nop_action)
else let (q', a) := trans (q, s) in (inl q', a)
| inr q =>
let (q', a) := trans (projT2 q, s) in
(inr (existT _ (projT1 q) q'), a)
end.
Definition Switch_halt : (TM.states M1 + { f : F & TM.states (Mf f) }) -> bool :=
fun q =>
match q with
| inl _ => false
| inr q => halt (projT2 q)
end.
Definition SwitchTM : mTM sig n :=
{|
trans := Switch_trans;
halt := Switch_halt;
start := inl (start M1);
|}.
Definition Switch_p : (states SwitchTM) -> F' :=
fun q => match q with
| inl q => p2 (p1 q) (start (Mf (p1 q))) (* Canonical value *)
| inr q => p2 (projT1 q) (projT2 q)
end.
Definition Switch : pTM sig F' n := (SwitchTM; Switch_p).
Lift configurations of M1 to configurations of Switch
Definition lift_confL (c : mconfig sig (states M1) n) : mconfig sig (states SwitchTM) n :=
mk_mconfig (inl (cstate c)) (ctapes c).
mk_mconfig (inl (cstate c)) (ctapes c).
Lift configuration of M2 to configurations of Switch
Definition lift_confR (f : F) (c : mconfig sig (states (Mf f) ) n) : mconfig sig (states SwitchTM) n :=
mk_mconfig (inr (existT (fun f0 : F => states (Mf f0)) f (cstate c))) (ctapes c).
mk_mconfig (inr (existT (fun f0 : F => states (Mf f0)) f (cstate c))) (ctapes c).
Lifted Steps of M1 are compatible with steps in M1, for non-halting states
Lemma step_comp_liftL (c : mconfig sig (states M1) n) :
haltConf c = false -> step (lift_confL c) = lift_confL (step c).
Proof.
unfold lift_confL, step, haltConf. cbn. destruct c as [q t]; cbn in *. intros H. rewrite H.
destruct (trans _) eqn:E. cbn. reflexivity.
Qed.
haltConf c = false -> step (lift_confL c) = lift_confL (step c).
Proof.
unfold lift_confL, step, haltConf. cbn. destruct c as [q t]; cbn in *. intros H. rewrite H.
destruct (trans _) eqn:E. cbn. reflexivity.
Qed.
Lifted steps of case-machines Mf f are compatible with steps in Mf f
Lemma step_comp_liftR f (c : mconfig sig (states (Mf f)) n) :
step (lift_confR c) = lift_confR (step c).
Proof.
destruct c. unfold lift_confR, step. cbn.
destruct (trans _) eqn:E. cbn. reflexivity.
Qed.
step (lift_confR c) = lift_confR (step c).
Proof.
destruct c. unfold lift_confR, step. cbn.
destruct (trans _) eqn:E. cbn. reflexivity.
Qed.
Lifted halting states of M1
Definition halt_liftL (c : mconfig sig (states (SwitchTM)) n) :=
match cstate c with
| inl q => halt (m := M1) q
| inr q => true
end.
match cstate c with
| inl q => halt (m := M1) q
| inr q => true
end.
Non-halting states of M1 are non-halting states of Switch
Lemma halt_conf_liftL (c : mconfig sig (states SwitchTM) n) :
halt_liftL c = false -> halt (cstate c) = false.
Proof.
intros H. cbn. unfold Switch_halt.
destruct c as [q t]; cbn.
destruct q; cbn in *; auto.
Qed.
halt_liftL c = false -> halt (cstate c) = false.
Proof.
intros H. cbn. unfold Switch_halt.
destruct c as [q t]; cbn.
destruct q; cbn in *; auto.
Qed.
The "nop" transition jumps from a halting configuration of M1 to the initial configuration of the corresponding case-machine.
Lemma step_nop_transition (c : mconfig sig (states M1) n) :
haltConf c = true ->
step (lift_confL c) = lift_confR (initc (Mf (p1 (cstate c))) (ctapes c)).
Proof.
intros Halt.
unfold lift_confL, lift_confR. cbn. unfold haltConf in Halt.
unfold step at 1; cbn.
rewrite Halt. f_equal.
apply doAct_nop.
Qed.
haltConf c = true ->
step (lift_confL c) = lift_confR (initc (Mf (p1 (cstate c))) (ctapes c)).
Proof.
intros Halt.
unfold lift_confL, lift_confR. cbn. unfold haltConf in Halt.
unfold step at 1; cbn.
rewrite Halt. f_equal.
apply doAct_nop.
Qed.
The starting configuration of Switch corresponds to the starting configuration of M1.
This lemma is needed for the termination part. Suppose M1 terminates in c1. The case machine Mf f starts with the tapes of c1 and terminates in a configuration c2. Then, if we start Switch with the same tapes as M1, Switch terminates in the lifted configuration of c2.
Lemma Switch_merge t (k1 k2 : nat)
(c1 : mconfig sig (states M1) n)
(c2 : mconfig sig (states (Mf (p1 (cstate c1)))) n) :
loopM (initc M1 t) k1 = Some c1 ->
loopM (initc (Mf (p1 (cstate c1))) (ctapes c1)) k2 = Some c2 ->
loopM (initc SwitchTM t) (k1 + (1 + k2)) = Some (lift_confR c2).
Proof.
intros HLoop1 HLoop2. unfold loopM in *.
apply loop_merge with (h := halt_liftL) (a2 := lift_confL c1).
- apply halt_conf_liftL.
- rewrite lift_initc.
apply loop_lift with (h := haltConf (M := M1)) (f := step (M := M1)).
+ unfold haltConf. intros. cbn. reflexivity.
+ apply step_comp_liftL.
+ apply HLoop1.
- (* execute one step *)
rewrite loop_step by auto.
rewrite step_nop_transition by apply (loop_fulfills HLoop1).
eapply loop_lift with (lift := lift_confR (f := p1 (cstate c1))) (f' := step (M := SwitchTM)) (h' := haltConf (M := SwitchTM)) in HLoop2.
+ apply HLoop2.
+ intros. cbn. now destruct x.
+ intros. apply step_comp_liftR.
Qed.
(c1 : mconfig sig (states M1) n)
(c2 : mconfig sig (states (Mf (p1 (cstate c1)))) n) :
loopM (initc M1 t) k1 = Some c1 ->
loopM (initc (Mf (p1 (cstate c1))) (ctapes c1)) k2 = Some c2 ->
loopM (initc SwitchTM t) (k1 + (1 + k2)) = Some (lift_confR c2).
Proof.
intros HLoop1 HLoop2. unfold loopM in *.
apply loop_merge with (h := halt_liftL) (a2 := lift_confL c1).
- apply halt_conf_liftL.
- rewrite lift_initc.
apply loop_lift with (h := haltConf (M := M1)) (f := step (M := M1)).
+ unfold haltConf. intros. cbn. reflexivity.
+ apply step_comp_liftL.
+ apply HLoop1.
- (* execute one step *)
rewrite loop_step by auto.
rewrite step_nop_transition by apply (loop_fulfills HLoop1).
eapply loop_lift with (lift := lift_confR (f := p1 (cstate c1))) (f' := step (M := SwitchTM)) (h' := haltConf (M := SwitchTM)) in HLoop2.
+ apply HLoop2.
+ intros. cbn. now destruct x.
+ intros. apply step_comp_liftR.
Qed.
The Switch machine must take the "nop" action if it is in a final state of M1.
Lemma step_nop_split (k2 : nat) (c2 : mconfig sig (states M1) n) (outc : mconfig sig (states SwitchTM) n) :
haltConf c2 = true ->
loopM (M := SwitchTM) (lift_confL c2) k2 = Some outc ->
exists k2' c2',
k2 = S k2' /\
loopM (M := Mf (p1 (cstate c2))) (initc _ (ctapes c2)) k2' = Some c2' /\
outc = lift_confR c2'.
Proof.
unfold loopM. intros HHalt HLoop2. unfold haltConf in HHalt.
destruct k2 as [ | k2'].
- inv HLoop2.
- exists k2'. cbn in HLoop2.
rewrite step_nop_transition in HLoop2 by assumption.
apply loop_unlift with
(f := step (M := Mf (p1 (cstate c2))))
(h := haltConf (M := Mf (p1 (cstate c2)))) in HLoop2 as
(c2'&HLoop2&->).
+ exists c2'. repeat split. exact HLoop2.
+ intros. reflexivity.
+ intros. apply step_comp_liftR.
Qed.
Lemma Switch_split k t (outc : mconfig sig (states SwitchTM) n) :
loopM (initc SwitchTM t) k = Some outc ->
exists k1 (c1 : mconfig sig (states M1) n) k2 (c2 : mconfig sig (states (Mf (p1 (cstate c1)))) n),
loopM (initc M1 t) k1 = Some c1 /\
loopM (initc (Mf (p1 (cstate c1))) (ctapes c1)) k2 = Some c2 /\
outc = lift_confR c2.
Proof.
unfold loopM. intros H.
apply loop_split with (h := halt_liftL) in H as (k1&c1&k2&HLoop1&HLoop2&_).
- rewrite lift_initc in HLoop1.
apply loop_unlift with (lift := lift_confL) (f := step (M := M1)) (h := haltConf (M := M1)) in HLoop1 as (c1'&HLoop1&->).
+ apply step_nop_split in HLoop2 as (k2'&c2'&_&HLoop2&->). 2: now apply (loop_fulfills HLoop1).
exists k1, c1', k2', c2'. auto.
+ intros. cbn. reflexivity.
+ intros. now apply step_comp_liftL.
- apply halt_conf_liftL.
Qed.
haltConf c2 = true ->
loopM (M := SwitchTM) (lift_confL c2) k2 = Some outc ->
exists k2' c2',
k2 = S k2' /\
loopM (M := Mf (p1 (cstate c2))) (initc _ (ctapes c2)) k2' = Some c2' /\
outc = lift_confR c2'.
Proof.
unfold loopM. intros HHalt HLoop2. unfold haltConf in HHalt.
destruct k2 as [ | k2'].
- inv HLoop2.
- exists k2'. cbn in HLoop2.
rewrite step_nop_transition in HLoop2 by assumption.
apply loop_unlift with
(f := step (M := Mf (p1 (cstate c2))))
(h := haltConf (M := Mf (p1 (cstate c2)))) in HLoop2 as
(c2'&HLoop2&->).
+ exists c2'. repeat split. exact HLoop2.
+ intros. reflexivity.
+ intros. apply step_comp_liftR.
Qed.
Lemma Switch_split k t (outc : mconfig sig (states SwitchTM) n) :
loopM (initc SwitchTM t) k = Some outc ->
exists k1 (c1 : mconfig sig (states M1) n) k2 (c2 : mconfig sig (states (Mf (p1 (cstate c1)))) n),
loopM (initc M1 t) k1 = Some c1 /\
loopM (initc (Mf (p1 (cstate c1))) (ctapes c1)) k2 = Some c2 /\
outc = lift_confR c2.
Proof.
unfold loopM. intros H.
apply loop_split with (h := halt_liftL) in H as (k1&c1&k2&HLoop1&HLoop2&_).
- rewrite lift_initc in HLoop1.
apply loop_unlift with (lift := lift_confL) (f := step (M := M1)) (h := haltConf (M := M1)) in HLoop1 as (c1'&HLoop1&->).
+ apply step_nop_split in HLoop2 as (k2'&c2'&_&HLoop2&->). 2: now apply (loop_fulfills HLoop1).
exists k1, c1', k2', c2'. auto.
+ intros. cbn. reflexivity.
+ intros. now apply step_comp_liftL.
- apply halt_conf_liftL.
Qed.
Correctness
Lemma Switch_Realise (R1 : Rel _ (F * _)) (R2 : F -> Rel _ (F' * _)) :
pM1 ⊨ R1 ->
(forall f : F, pMf f ⊨ R2 f) -> Switch ⊨ (⋃_f (R1 |_ f) ∘ R2 f).
Proof.
intros HRel1 HRel2. hnf in HRel1.
hnf. intros t i outc HLoop.
apply Switch_split in HLoop as (k1&c1&k2&c2&HLoop1&HLoop2&->). cbn.
exists (p1 (cstate c1)), (ctapes c1). split.
- apply (HRel1 _ _ _ HLoop1).
- apply (HRel2 _ _ _ _ HLoop2).
Qed.
pM1 ⊨ R1 ->
(forall f : F, pMf f ⊨ R2 f) -> Switch ⊨ (⋃_f (R1 |_ f) ∘ R2 f).
Proof.
intros HRel1 HRel2. hnf in HRel1.
hnf. intros t i outc HLoop.
apply Switch_split in HLoop as (k1&c1&k2&c2&HLoop1&HLoop2&->). cbn.
exists (p1 (cstate c1)), (ctapes c1). split.
- apply (HRel1 _ _ _ HLoop1).
- apply (HRel2 _ _ _ _ HLoop2).
Qed.
Runtime
Lemma Switch_TerminatesIn (R1 : Rel _ (F * _)) T1 T2 :
pM1 ⊨ R1 -> M1 ↓ T1 -> (forall f : F, Mf f ↓(T2 f)) ->
projT1 Switch ↓ (fun tin i => exists i1 i2, T1 tin i1 /\ 1 + i1 + i2 <= i /\ forall tout yout, R1 tin (yout, tout) -> T2 yout tout i2).
Proof.
unfold Switch. intros HRel1 HTerm1 HTerm2. hnf in HRel1, HTerm1.
hnf. intros t i (i1&i2&HT1&Hk&H).
specialize HTerm1 with (1 := HT1) as (c1&HLoop1).
specialize HRel1 with (1 := HLoop1).
specialize H with (1 := HRel1).
specialize (HTerm2 _ _ _ H) as (c2&HLoop2).
pose proof Switch_merge HLoop1 HLoop2 as HLoop.
exists (lift_confR c2). eapply loop_monotone; eauto. omega.
Qed.
pM1 ⊨ R1 -> M1 ↓ T1 -> (forall f : F, Mf f ↓(T2 f)) ->
projT1 Switch ↓ (fun tin i => exists i1 i2, T1 tin i1 /\ 1 + i1 + i2 <= i /\ forall tout yout, R1 tin (yout, tout) -> T2 yout tout i2).
Proof.
unfold Switch. intros HRel1 HTerm1 HTerm2. hnf in HRel1, HTerm1.
hnf. intros t i (i1&i2&HT1&Hk&H).
specialize HTerm1 with (1 := HT1) as (c1&HLoop1).
specialize HRel1 with (1 := HLoop1).
specialize H with (1 := HRel1).
specialize (HTerm2 _ _ _ H) as (c2&HLoop2).
pose proof Switch_merge HLoop1 HLoop2 as HLoop.
exists (lift_confR c2). eapply loop_monotone; eauto. omega.
Qed.
Correct + constant running time
Lemma Switch_RealiseIn (R1 : Rel _ (F * _)) (R2 : F -> Rel _ (F' * _)) k1 k2:
pM1 ⊨c(k1) R1 ->
(forall f : F, pMf f ⊨c(k2) R2 f) ->
Switch ⊨c(1 + k1 + k2) (⋃_f (R1 |_ f) ∘ R2 f).
Proof.
intros (H1&H2) % Realise_total H3. apply Realise_total. split.
- eapply Switch_Realise; eauto. intros ?. eapply Realise_total; eauto.
- eapply TerminatesIn_monotone.
+ apply Switch_TerminatesIn; eauto. intros ?. eapply Realise_total; eauto.
+ firstorder.
Qed.
End Switch.
Arguments Switch : simpl never.
(* Deprecated names *)
Notation MATCH := Switch.
Notation Match := Switch.
pM1 ⊨c(k1) R1 ->
(forall f : F, pMf f ⊨c(k2) R2 f) ->
Switch ⊨c(1 + k1 + k2) (⋃_f (R1 |_ f) ∘ R2 f).
Proof.
intros (H1&H2) % Realise_total H3. apply Realise_total. split.
- eapply Switch_Realise; eauto. intros ?. eapply Realise_total; eauto.
- eapply TerminatesIn_monotone.
+ apply Switch_TerminatesIn; eauto. intros ?. eapply Realise_total; eauto.
+ firstorder.
Qed.
End Switch.
Arguments Switch : simpl never.
(* Deprecated names *)
Notation MATCH := Switch.
Notation Match := Switch.