From SyntheticComputability.Synthetic Require Import DecidabilityFacts SemiDecidabilityFacts EnumerabilityFacts.
From SyntheticComputability Require Import Shared.embed_nat.
Require Import List Lia.
Import ListNotations EmbedNatNotations.
From SyntheticComputability Require Import Shared.embed_nat.
Require Import List Lia.
Import ListNotations EmbedNatNotations.
Definition cumulative {X} (L: nat -> list X) :=
forall n, exists A, L (S n) = L n ++ A.
#[export] Hint Extern 0 (cumulative _) => intros ?; cbn; eauto : core.
Lemma cum_ge {X} {L: nat -> list X} {n m} :
cumulative L -> m >= n -> exists A, L m = L n ++ A.
Proof.
induction 2 as [|m _ IH].
- exists nil. now rewrite app_nil_r.
- destruct (H m) as (A&->), IH as [B ->].
exists (B ++ A). now rewrite app_assoc.
Qed.
Lemma cum_ge' {X} {L: nat -> list X} {x n m} :
cumulative L -> In x (L n) -> m >= n -> In x (L m).
Proof.
intros ? H [A ->] % (cum_ge (L := L)). apply in_app_iff. eauto. eauto.
Qed.
Definition list_enumerator {X} (L: nat -> list X) (p : X -> Prop) :=
forall x, p x <-> exists m, In x (L m).
Definition list_enumerable {X} (p : X -> Prop) :=
exists L, list_enumerator L p.
Definition list_enumeratorᵗ' X f := forall x : X, exists n : nat, In x (f n).
Notation list_enumeratorᵗ f X := (list_enumeratorᵗ' X f).
Definition list_enumerableᵗ X := exists f : nat -> list X, list_enumeratorᵗ f X.
Lemma list_enumerator_list_enumeratorᵗ X f :
list_enumerator f (fun _ : X => True) <-> list_enumeratorᵗ f X.
Proof.
split; intros Hf x.
- destruct (Hf x) as [[n H] _]; eauto.
- destruct (Hf x) as [n H]; firstorder.
Qed.
Lemma list_enumerable_list_enumerableᵗ X :
list_enumerable (fun _ : X => True) <-> list_enumerableᵗ X.
Proof.
split; intros [f Hf]; eapply ex_intro, list_enumerator_list_enumeratorᵗ, Hf.
Qed.
Section enumerator_list_enumerator.
Variable X : Type.
Variable p : X -> Prop.
Variables (e : nat -> option X).
Let T (n : nat) : list X := if e n is Some x then [x] else [].
Lemma enumerator_to_list_enumerator : forall x, (exists n, e n = Some x) <-> (exists n, In x (T n)).
Proof.
split; intros [n H].
- exists n. unfold T. rewrite H. firstorder.
- unfold T in *. destruct (e n) eqn:E. inversion H; subst. eauto. inversion H0. inversion H.
Qed.
End enumerator_list_enumerator.
Lemma enumerator_list_enumerator {X} {p : X -> Prop} f :
enumerator f p -> list_enumerator (fun n => if f n is Some x then [x] else []) p.
Proof.
intros Hf x. rewrite (Hf x). now rewrite <- enumerator_to_list_enumerator.
Qed.
Lemma enumerable_list_enumerable {X} {p : X -> Prop} :
enumerable p -> list_enumerable p.
Proof.
intros [f Hf]. eapply ex_intro, enumerator_list_enumerator, Hf.
Qed.
Lemma enumerableᵗ_list_enumerableᵗ {X} :
enumerableᵗ X -> list_enumerableᵗ X.
Proof.
intros [f Hf]. eapply ex_intro, list_enumerator_list_enumeratorᵗ, enumerator_list_enumerator, enumerator_enumeratorᵗ, Hf.
Qed.
Section enumerator_list_enumerator.
Variable X : Type.
Variables (T : nat -> list X).
Let e := fun! ⟨ n , m ⟩ => nth_error (T n) m.
Lemma list_enumerator_to_enumerator : forall x, (exists n, e n = Some x) <-> (exists n, In x (T n)).
Proof.
split; intros [k H].
- unfold e in *.
destruct (unembed k) as (n, m).
exists n. eapply (nth_error_In _ _ H).
- unfold e in *.
eapply In_nth_error in H as [m].
exists (embed (k, m)). now rewrite embedP, H.
Qed.
End enumerator_list_enumerator.
Lemma list_enumerator_enumerator {X} {p : X -> Prop} {L} :
list_enumerator L p -> enumerator (fun! ⟨ n , m ⟩ => nth_error (L n) m) p.
Proof.
unfold list_enumerator.
intros H x. rewrite list_enumerator_to_enumerator. eauto.
Qed.
Lemma list_enumeratorᵗ_enumeratorᵗ {X} {L} :
list_enumeratorᵗ L X -> enumeratorᵗ (fun! ⟨ n , m ⟩ => nth_error (L n) m) X.
Proof.
unfold list_enumerator.
intros H x. rewrite list_enumerator_to_enumerator. eauto.
Qed.
Lemma list_enumerable_enumerable {X} {p : X -> Prop} :
list_enumerable p -> enumerable p.
Proof.
intros [T HT]. eapply ex_intro, list_enumerator_enumerator, HT.
Qed.
Lemma list_enumerableᵗ_enumerableᵗ {X} :
list_enumerableᵗ X -> enumerableᵗ X.
Proof.
intros [T HT].
eapply ex_intro, enumerator_enumeratorᵗ, list_enumerator_enumerator, list_enumerator_list_enumeratorᵗ, HT.
Qed.
Lemma enum_enumT {X} :
enumerableᵗ X <-> list_enumerableᵗ X.
Proof.
split.
eapply enumerableᵗ_list_enumerableᵗ.
eapply list_enumerableᵗ_enumerableᵗ.
Qed.
Definition to_cumul {X} (L : nat -> list X) := fix f n :=
match n with 0 => L 0 | S n => f n ++ L (S n) end.
Lemma to_cumul_cumulative {X} (L : nat -> list X) :
cumulative (to_cumul L).
Proof.
eauto.
Qed.
Lemma to_cumul_spec {X} (L : nat -> list X) x :
(exists n, In x (L n)) <-> exists n, In x (to_cumul L n).
Proof.
split.
- intros [n H].
exists n. destruct n. eassumption. cbn. eapply in_app_iff. eauto.
- intros [n H].
induction n; cbn in *.
+ exists 0. exact H.
+ eapply in_app_iff in H as [H | H]; eauto.
Qed.
Lemma cumul_In {X} (L : nat -> list X) x n :
In x (L n) -> In x (to_cumul L n).
Proof.
intros H. destruct n. eassumption. cbn. eapply in_app_iff; eauto.
Qed.
Lemma In_cumul {X} (L : nat -> list X) x n :
In x (to_cumul L n) -> exists n, In x (L n).
Proof.
intros H. eapply to_cumul_spec. eauto.
Qed.
#[export] Hint Resolve cumul_In In_cumul : core.
Lemma list_enumerator_to_cumul {X} {p : X -> Prop} {L} :
list_enumerator L p -> list_enumerator (to_cumul L) p.
Proof.
unfold list_enumerator.
intros. rewrite H.
eapply to_cumul_spec.
Qed.
Lemma cumul_specᵗ {X} {L} :
list_enumeratorᵗ L X -> list_enumeratorᵗ (to_cumul L) X.
Proof.
unfold list_enumeratorᵗ.
intros. now rewrite <- to_cumul_spec.
Qed.
Lemma cumul_spec {X} {L} {p : X -> Prop} :
list_enumerator L p -> list_enumerator (to_cumul L) p.
Proof.
unfold list_enumerator.
intros. now rewrite <- to_cumul_spec.
Qed.
Require Import SyntheticComputability.Shared.ListAutomation.
Import ListAutomationNotations.
Notation cumul := (to_cumul).
Section L_list_def.
Context {X : Type}.
Variable (L : nat -> list X).
Fixpoint L_list (n : nat) : list (list X) :=
match n
with
| 0 => [ [] ]
| S n => L_list n ++ [ x :: L | (x,L) ∈ (cumul L n × L_list n) ]
end.
End L_list_def.
Lemma L_list_cumulative {X} L : cumulative (@L_list X L).
Proof.
intros ?; cbn; eauto.
Qed.
Lemma enumeratorᵗ_list {X} L :
list_enumeratorᵗ L X -> list_enumeratorᵗ (L_list L) (list X).
Proof.
intros H l.
induction l.
- exists 0. cbn. eauto.
- destruct IHl as [n IH].
destruct (cumul_specᵗ H a) as [m ?].
exists (1 + n + m). cbn. intros. in_app 2.
in_collect (a,l).
all: eapply cum_ge'; eauto using L_list_cumulative; lia.
Qed.
Lemma enumerable_list {X} : list_enumerableᵗ X -> list_enumerableᵗ (list X).
Proof.
intros [L H].
eexists. now eapply enumeratorᵗ_list.
Qed.
list_enumeratorᵗ L X -> list_enumeratorᵗ (L_list L) (list X).
Proof.
intros H l.
induction l.
- exists 0. cbn. eauto.
- destruct IHl as [n IH].
destruct (cumul_specᵗ H a) as [m ?].
exists (1 + n + m). cbn. intros. in_app 2.
in_collect (a,l).
all: eapply cum_ge'; eauto using L_list_cumulative; lia.
Qed.
Lemma enumerable_list {X} : list_enumerableᵗ X -> list_enumerableᵗ (list X).
Proof.
intros [L H].
eexists. now eapply enumeratorᵗ_list.
Qed.
Typeclasses
Definition L_T {X : Type} {f : nat -> list X} {H : list_enumeratorᵗ f X} : nat -> list X.
exact (cumul f).
Defined.
Arguments L_T _ {_ _} _, {_ _ _}.
#[export] Hint Unfold L_T : core.
#[export] Hint Resolve cumul_In : core.
Existing Class list_enumeratorᵗ'.
Definition el_T {X} {f} `{list_enumeratorᵗ f X} : list_enumeratorᵗ L_T X.
Proof.
now eapply cumul_specᵗ.
Defined.
#[export] Existing Instance enumeratorᵗ_list.
#[export] Instance enumeratorᵗ_to_list {X} {f} :
list_enumeratorᵗ f X -> enumeratorᵗ (fun n => let (n, m) := unembed n in nth_error (f n) m) X | 100.
Proof.
intros H x. eapply list_enumerator_to_enumerator in H. exact H.
Qed.
#[export] Instance enumeratorᵗ_of_list {X} {f} :
enumeratorᵗ f X -> list_enumeratorᵗ (fun n => match f n with Some x => [x] | None => [] end) X | 100.
Proof.
intros H x. eapply enumerator_to_list_enumerator. eauto.
Qed.
(*
Existing Class inf_list_enumerableᵗ.
Instance inf_to_enumerator {X} :
forall H : inf_list_enumerableᵗ X, list_enumeratorᵗ (proj1_sig H) X | 100.
Proof.
intros ? H. eapply H.
Defined. *)
Compatibility
#[export] Hint Unfold enumerable list_enumerable : core.
#[export] Hint Resolve enumerable_list_enumerable
list_enumerable_enumerable : core.
Lemma enumerable_enum {X} {p : X -> Prop} :
enumerable p <-> list_enumerable p.
Proof.
split; eauto.
Qed.
Predicate embedability
(* Definition infinite {X} (sz : X -> nat) (p : X -> Prop) := forall n, exists x, sz x >= n /\ p x. *)
(* Lemma enumerable_infinite {X} (p : X -> Prop) sz : *)
(* discrete X -> *)
(* infinite sz p -> *)
(* enumerable p -> *)
(* exists e : nat -> X, (forall x, p x <-> exists n, e n = x) /\ (forall n1 n2, e n1 = e n2 -> n1 = n2). *)
(* Proof. *)
(* intros D *)
(* assert (gen : forall L, exists x, p x /\ ~ In x L) by admit. *)
(* pose (g := fix g n := match n with *)
(* 0 => nil *)
(* | S n => g n ++ proj1_sig (gen (g n)) *)
(* end). *)
(* exists (fun n => proj1_sig (gen (g n))). *)
(* red in He. split. *)
(* - intros x. *)
(* Definition tight_retraction' {X} {Y} (I : X -> Y) R := forall x : X, R (I x) = x. *)
(* Notation tight_retraction I R X Y := (@tight_retraction' X Y I R). *)
(* Definition tight_retract X Y := exists I R, retraction I R X Y. *)
(* Definition countable X := retract X nat. *)