Ssr.BetaSubstitution
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
Require Import Autosubst.
Set Implicit Arguments.
Unset Strict Implicit.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
Require Import Autosubst.
Set Implicit Arguments.
Unset Strict Implicit.
Untyped Lambda Terms and Parallel Substitutions
Inductive term :=
| Var (x : var)
| App (s t : term)
| Lam (s : {bind term}).
Instance Ids_term : Ids term. derive. Defined.
Instance Rename_term : Rename term. derive. Defined.
Instance Subst_term : Subst term. derive. Defined.
Instance SubstLemmas_term : SubstLemmas term. derive. Qed.
The optimized implementation of single variable substitutions
Fixpoint lift_at (d k : nat) (s : term) : term :=
match s with
| Var i => if i < d then Var i else Var (k + i)
| App s t => App (lift_at d k s) (lift_at d k t)
| Lam s => Lam (lift_at d.+1 k s)
end.
Notation lift := (lift_at 0).
Fixpoint sbst_at (d : nat) (t s : term) : term :=
match s with
| Var x => if x < d then Var x else if x == d then lift d t else Var x.-1
| App s1 s2 => App (sbst_at d t s1) (sbst_at d t s2)
| Lam s => Lam (sbst_at d.+1 t s)
end.
Notation sbst := (sbst_at 0).
Soundness proof
Lemma lift_at_sound d k s :
lift_at d k s = s.[upn d (ren (+k))].
Proof.
elim: s d => /=[x|s ihs t iht|s ih] d.
- elim: d x => //= d ih [|x] //. rewrite iterate_S; asimpl.
by rewrite -ih (fun_if (subst (ren (+1)))).
- by rewrite ihs iht.
- by rewrite ih.
Qed.
Lemma lift_sound k s :
lift k s = s.[ren (+k)].
Proof.
exact: lift_at_sound.
Qed.
Lemma upnP n sigma x :
upn n sigma x =
if x < n then Var x else (sigma (x - n)).[ren (+n)].
Proof.
case: ifPn.
- elim: x n =>[|x ih][|n]//=/ih e. rewrite iterate_S. asimpl. by rewrite e.
- rewrite -leqNgt. elim: x n => [|x ih][|n]; try autosubst. by case: n.
move=>/ih e. rewrite iterate_S. asimpl. rewrite e. autosubst.
Qed.
Lemma sbst_at_sound d t s :
sbst_at d t s = s.[upn d (t .: ids)].
Proof.
elim: s d => /=[x|s1 ih1 s2 ih2|s ih] d.
- rewrite lift_sound. rewrite upnP. case: ifPn => //=. rewrite -leqNgt => le.
case: ifP => [/eqP->|/eqP/eqP]. by rewrite subnn. rewrite neq_ltn =>/orP[|{le}]//.
move=> /leq_trans/(_ le). by rewrite ltnn. rewrite -subn_gt0 => p.
move: (p) => /ltn_predK<-/=. rewrite/ids/Ids_term. f_equal.
case: x p => //= n p. rewrite subSKn plusE subnKC //. by rewrite subn_gt0 in p.
- by rewrite ih1 ih2.
- by rewrite ih.
Qed.
Lemma sbst_sound t s :
sbst t s = s.[t/].
Proof.
exact: sbst_at_sound.
Qed.