Ssr.SystemF_SN

Strong Normalization of System F


Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq.
Require Import AutosubstSsr ARS Context.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Definitions


Inductive type : Type :=
| TyVar (x : var)
| Arr (A B : type)
| All (A : {bind type}).

Inductive term :=
| TeVar (x : var)
| Abs (A : type) (s : {bind term})
| App (s t : term)
| TAbs (s : {bind type in term})
| TApp (s : term) (A : type).

Substitution Lemmas


Instance Ids_type : Ids type. derive. Defined.
Instance Rename_type : Rename type. derive. Defined.
Instance Subst_type : Subst type. derive. Defined.

Instance SubstLemmas_type : SubstLemmas type. derive. Qed.

Instance HSubst_term : HSubst type term. derive. Defined.

Instance Ids_term : Ids term. derive. Defined.
Instance Rename_term : Rename term. derive. Defined.
Instance Subst_term : Subst term. derive. Defined.

Instance HSubstLemmas_term : HSubstLemmas type term. derive. Qed.
Instance SubstHSubstComp_type_term : SubstHSubstComp type term. derive. Qed.

Instance SubstLemmas_term : SubstLemmas term. derive. Qed.

One-Step Reduction


Inductive step : term term Prop :=
| step_beta (A : type) (s t : term) :
    step (App (Abs A s) t) s.[t/]
| step_inst (A : type) (s : term) :
    step (TApp (TAbs s) A) s.|[A/]
| step_appL t :
    step step (App t) (App t)
| step_appR s :
    step step (App s ) (App s )
| step_abs A :
    step step (Abs A ) (Abs A )
| step_tapp A :
    step step (TApp A) (TApp A)
| step_tabs :
    step step (TAbs ) (TAbs ).

Lemma step_ebeta A s t u : u = s.[t/] step (App (Abs A s) t) u.
Proof. move. exact: step_beta. Qed.

Lemma step_einst A s t : t = s.|[A/] step (TApp (TAbs s) A) t.
Proof. move. exact: step_inst. Qed.

Lemma step_substf s t :
  step s t step s.|[].[] t.|[].[].
Proof.
  move st. elim: st {s t}; asimpl; eauto using step.
  - move A s t . apply: step_ebeta. by autosubst.
  - move A s . apply: step_einst. by autosubst.
Qed.


Lemma step_subst s t : step s t step s.[] t.[].
Proof. move h. apply (step_substf ids ) in h. by asimpl in h. Qed.

Lemma step_hsubst s t : step s t step s.|[] t.|[].
Proof. move h. apply (step_substf ids) in h. by asimpl in h. Qed.

Many-Step Reduction


Definition red := star step.

Definition sred :=
   x : var, red ( x) ( x).

Lemma red_app :
  red red red (App ) (App ).
Proof.
  move A B. apply: (star_trans (App )).
  - apply: (star_hom (App^~ )) A x y. exact: step_appL.
  - apply: star_hom B x y. exact: step_appR.
Qed.


Lemma red_abs A : red red (Abs A ) (Abs A ).
Proof. apply: star_hom x y. exact: step_abs. Qed.

Lemma red_tapp A : red red (TApp A) (TApp A).
Proof. apply: (star_hom (TApp^~A)) x y. exact: step_tapp. Qed.

Lemma red_tabs : red red (TAbs ) (TAbs ).
Proof. apply: star_hom x y. exact: step_tabs. Qed.

Lemma red_subst s t : red s t red s.[] t.[].
Proof. apply: star_hom x y. exact: step_subst. Qed.

Lemma red_hsubst s t : red s t red s.|[] t.|[].
Proof. apply: star_hom x y. exact: step_hsubst. Qed.

Lemma sred_up : sred sred (up ) (up ).
Proof. move A [|n] //=. asimpl. apply/red_subst/A. Qed.

Lemma sred_hup :
  sred sred ( >>| ) ( >>| ).
Proof. move A n /=. apply/red_hsubst/A. Qed.

Hint Resolve red_app red_abs red_tapp red_tabs sred_up sred_hup : red_congr.

Lemma red_compat s :
  sred red s.[] s.[].
Proof.
  elim: s ; intros; asimpl; eauto with red_congr.
Qed.


Lemma red_beta s : step red s.[/] s.[/].
Proof. move h. apply: red_compat -[|n]/=; [exact: star1|exact: starR]. Qed.

Syntactic typing


Definition ctx := seq type.
Local Notation "Gamma `_ i" := (get i).

Inductive has_type ( : ctx) : term type Prop :=
| ty_var (x : var) :
    x < size has_type (TeVar x) `_x
| ty_abs (A B : type) (s : term) :
    has_type (A :: ) s B
    has_type (Abs A s) (Arr A B)
| ty_app (A B : type) (s t : term) :
    has_type s (Arr A B)
    has_type t A
    has_type (App s t) B
| ty_tabs (A : type) (s : term) :
    has_type ..[ren (+1)] s A
    has_type (TAbs s) (All A)
| ty_tapp (A B : type) (s : term) :
    has_type s (All A)
    has_type (TApp s B) A.[B/].

(* Strong Normalization *)

Notation sn := (sn step).

Lemma sn_closed t s : sn (App s t) sn s.
Proof. apply: (sn_preimage (h := App^~t)) x y. exact: step_appL. Qed.

Lemma sn_tclosed A s : sn (TApp s A) sn s.
Proof. apply: (sn_preimage (h := TApp^~A)) x y. exact: step_tapp. Qed.

Lemma sn_subst s : sn s.[] sn s.
Proof. apply: sn_preimage x y. exact: step_subst. Qed.

Lemma sn_hsubst s : sn s.|[] sn s.
Proof. apply: sn_preimage x y. exact: step_hsubst. Qed.

(* The Reducibility Candidates/Logical Predicate*)

Definition cand := term Prop.

Definition neutral (s : term) : bool :=
  match s with
    | Abs _ _ | TAbs _ false
    | _ true
  end.

Record reducible (P : cand) : Prop := {
  p_sn : s, P s sn s;
  p_cl : s t, P s step s t P t;
  p_nc : s, neutral s ( t, step s t P t) P s
}.

Fixpoint L (T : type) ( : cand) : cand :=
  match T with
    | TyVar x x
    | Arr A B fun s t, L A t L B (App s t)
    | All A fun s P B, reducible P L A (P .: ) (TApp s B)
  end.

Definition EL E ( : cand) ( : var term) : Prop :=
   x, x < size E L E`_x ( x).

Definition admissible ( : cand) :=
   x, reducible ( x).

(* Facts about reducible sets. *)

Lemma reducible_sn : reducible sn.
Proof. constructor; eauto using ARS.sn. by move s t [f] /f. Qed.
Hint Resolve reducible_sn.

Lemma reducible_var P x : reducible P P (TeVar x).
Proof. move/p_nc. apply // t st. inv st. Qed.

Lemma ad_cons P :
  reducible P admissible admissible (P .: ).
Proof. by move [|i] //=. Qed.

Lemma L_reducible T :
  admissible reducible (L T ).
Proof with eauto using step.
  elim: T /=[i|A B |A ih] safe...
  - constructor.
    + move s h. apply: (@sn_closed (TeVar 0)). apply: (p_sn (P := L B ))...
      eapply h. eapply reducible_var; eauto.
    + move s t h st u la. apply: (p_cl _ (s := App s u))...
    + move s ns h t la. have snt := p_sn ( _ safe) la.
      elim: snt la {t} t _ la. apply: p_nc... move v st. inv st //...
      apply: //. exact: (p_cl ( _ safe)) la _.
  - constructor.
    + move s /(_ sn (TyVar 0) reducible_sn)/p_sn/sn_tclosed; apply.
      by apply/ih/ad_cons...
    + move s t h st P B rep. apply: p_cl (step_tapp B st)...
      by apply/ih/ad_cons.
    + move s ns h P B rep. apply ih... exact: ad_cons.
      move t st. inv st //...
Qed.


Corollary L_sn A s : admissible L A s sn s.
Proof. move /L_reducible/p_sn. apply. Qed.

Corollary L_cl T s t : admissible L T s step s t L T t.
Proof. move /L_reducible/p_cl. apply. Qed.

Corollary L_nc T s :
  admissible neutral s ( t, step s t L T t) L T s.
Proof. move /L_reducible/p_nc. apply. Qed.

Corollary L_var T x : admissible L T (TeVar x).
Proof. move /L_nc. apply // t st. inv st. Qed.

Corollary L_cl_star T s t :
  admissible L T s red s t L T t.
Proof. move /L_cl cl H st. elim: st H; eauto. Qed.

(* Closure under beta expansion. *)

Lemma beta_expansion A B s t :
  admissible sn t L A s.[t/]
  L A (App (Abs B s) t).
Proof with eauto.
  move ad snt h. have sns := sn_subst (L_sn ad h).
  elim: sns t snt h {s} s sns t. elim {t} t snt h.
  apply: L_nc // u st. inv st //.
  - inv . apply: //. apply: L_cl ad h _. exact: step_subst.
  - apply: //. apply: L_cl_star ad h _. exact: red_beta.
Qed.


Lemma inst_expansion A B s :
  admissible L A s.|[B/] L A (TApp (TAbs s) B).
Proof.
  move ad h. have sns := sn_hsubst (L_sn ad h). elim: sns h.
  move {s} s _ ih h. apply: L_nc // t st. inv st //.
  inv //. apply: ih //. apply: L_cl ad h _. exact: step_hsubst.
Qed.


(* The type substitution lemma. *)

Lemma extend_ext ( : cand) :
  ( i s, i s i s)
  ( P i s, (P .: ) i s (P .: ) i s).
Proof. by moveh P[]/=. Qed.

Lemma L_ext T :
  ( i s, i s i s) ( s, L T s L T s).
Proof.
  elim: T //=[ |T IH] E s.
  - split t .
    + rewrite -( _ _ E). apply: . by rewrite ( _ _ E).
    + rewrite ( _ _ E). apply: . by rewrite -( _ _ E).
  - move: E /extend_ext E. split H P B /H.
    + move /(_ B). by rewrite (IH _ _ (E P)).
    + move /(_ B). by rewrite -(IH _ _ (E P)).
Qed.


Lemma L_ren A s :
  L A.[ren ] s L A ( >>> ) s.
Proof with intuition.
  elim: A s [x|A B |A ih] s; asimpl //.
  - split t . rewrite -. apply: . by rewrite .
    rewrite . apply: . by rewrite -.
  - split h P B r. move: (h _ B r). rewrite ih. apply L_ext. by case.
    rewrite ih. asimpl. exact: h.
Qed.


Lemma L_weaken A P s : L A.[ren (+1)] (P .: ) s L A s.
Proof. exact: L_ren. Qed.

Lemma L_subst A s :
  L A.[] s L A (fun i L ( i) ) s.
Proof.
  elim: A s [x|A B |A ih] s; asimpl//.
  - split t . rewrite -. apply: . by rewrite .
    rewrite . apply . by rewrite -.
  - split h P B /(h _ B); rewrite ih; apply L_ext -[|x] //= t; asimpl;
    by rewrite L_weaken.
Qed.


(* The fundamental theorem. *)

Theorem soundness s A :
  has_type s A ,
    admissible EL L A s.|[].[].
Proof with eauto using L_sn, ad_cons.
  elim { s A} [| A B s _ ih|| A s _ ih| A B s _ /=ih]
     ad ; asimpl...
  - move t h. apply: beta_expansion... asimpl. apply: ih... by case.
  - move P B h. apply: inst_expansion... asimpl. apply: ih... move x.
    rewrite size_map lt. rewrite get_map // L_weaken...
  - rewrite L_subst. specialize (ih _ ad (L B ) B.[]).
    have/ih: reducible (L B ). exact: L_reducible. apply L_ext. by case.
Qed.


Lemma rho_id : admissible (fun _ sn).
Proof. move x /=. exact: reducible_sn. Qed.

Corollary type_L E s T : has_type E s T admissible L T s.
Proof.
  move ty ad. move: (@soundness E s T ty ) h.
  specialize (h ids ids ad). asimpl in h. apply: h x B. exact: L_var.
Qed.


Corollary strong_normalization E s T : has_type E s T sn s.
Proof. move/type_L/(_ rho_id)/L_sn. apply. exact: rho_id. Qed.

(* Local Variables: *)
(* coq-load-path: (("." "Ssr")) *)
(* End: *)