From Undecidability.Shared.Libs.DLW
  Require Import utils_tac.

From Undecidability.Synthetic Require Import Undecidability.

Require Import Undecidability.TM.TM.

Require Import Undecidability.PCP.PCP.
Require Import Undecidability.PCP.Reductions.HaltTM_1_to_PCPb.

From Undecidability.MinskyMachines
  Require Import MM PCPb_to_MM.

From Undecidability.FRACTRAN
  Require Import FRACTRAN FRACTRAN_undec MM_FRACTRAN.

From Undecidability.H10
  Require Import H10 FRACTRAN_DIO.

From Undecidability.H10.Dio
  Require Import dio_logic dio_elem dio_single.

Import ReductionChainNotations UndecidabilityNotations.

Set Implicit Arguments.

Theorem DIO_SINGLE_SAT_H10 : DIO_SINGLE_SAT H10.
Proof.
  apply reduces_dependent; exists.
  intros (E,v).
  destruct (dio_poly_eq_pos E) as (n & p & q & H).
  exists (existT _ n (dp_inst_par _ v p, dp_inst_par _ v q)).
  unfold DIO_SINGLE_SAT, H10.
  rewrite H.
  unfold dio_single_pred.
  split; intros (phi & H1); exists phi; revert H1; cbn;
    rewrite !dp_inst_par_eval; auto.
Qed.

Check FRACTRAN_undec.



Theorem Hilberts_Tenth :
   HaltTM 1 ⪯ₘ PCPb ⪯ₘ MM_HALTING ⪯ₘ FRACTRAN_HALTING ⪯ₘ DIO_LOGIC_SAT ⪯ₘ DIO_ELEM_SAT ⪯ₘ DIO_SINGLE_SAT ⪯ₘ H10 .
Proof.
  msplit 6.
  + apply HaltTM_1_to_PCPb.
  + apply PCPb_MM_HALTING.
  + apply MM_FRACTRAN_HALTING.
  + apply FRACTRAN_HALTING_DIO_LOGIC_SAT.
  + apply DIO_LOGIC_ELEM_SAT.
  + apply DIO_ELEM_SINGLE_SAT.
  + apply DIO_SINGLE_SAT_H10.
Qed.

Check Hilberts_Tenth.

Theorem H10_undec : undecidable H10.
Proof.
  apply (undecidability_from_reducibility undecidability_HaltTM).
  reduce with chain Hilberts_Tenth.
Qed.

Check H10_undec.