From Undecidability.L Require Import Util.L_facts Complexity.ResourceMeasures.
From Undecidability.L Require Import LM_heap_def.

Import Lia.


Definition extended (H H' : Heap) := forall alpha m, nth_error H alpha = Some m -> nth_error H' alpha = Some m.

Lemma get_current H m H' alpha : put H m = (alpha,H') -> nth_error H' alpha = Some m.
Proof.
  unfold put. intros [= <- <-].
  rewrite nth_error_app2. now rewrite <- minus_n_n. reflexivity.
Qed.

Lemma put_extends H H' m b: put H m = (b,H') -> extended H H'.
Proof.
  unfold extended,put.
  intros [= <- <-] ? ? ?. rewrite nth_error_app1;eauto using nth_error_Some_lt.
Qed.

Lemma tailRecursion_compile s P a T:
  tailRecursion (a,compile s ++ P) T = ((a,compile s ++ P))::T.
Proof.
  induction s in P,T|-*.
  all:cbn [compile].
  1,3:easy.
  rewrite <- !app_assoc. rewrite IHs1. now autorewrite with list.
Qed.

Lemma jumpTarget_correct s c: jumpTarget 0 [] (compile s ++ retT::c) = Some (compile s,c).
Proof.
  change (Some (compile s,c)) with (jumpTarget 0 ([]++compile s) (retT::c)).
  generalize 0.
  generalize (retT::c) as c'. clear c.
  generalize (@nil Tok) as c.
  induction s;intros c' c l.
  -reflexivity.
  -cbn. autorewrite with list. rewrite IHs1,IHs2. cbn. now autorewrite with list.
  -cbn. autorewrite with list. rewrite IHs. cbn. now autorewrite with list.
Qed.

Import L_Notations.

Inductive unfolds H a: nat -> term -> term -> Prop :=
| unfoldsUnbound k n :
    n < k ->
    unfolds H a k (var n) (var n)
| unfoldsBound k b P s s' n:
    n >= k ->
    lookup H a (n-k) = Some (b,P) ->
    reprP P s ->
    unfolds H b 0 s s' ->
    unfolds H a k (var n) s'
| unfoldsLam k s s':
    unfolds H a (S k) s s' ->
    unfolds H a k (lam s) (lam s')
| unfoldsApp k (s t s' t' : term):
    unfolds H a k s s' ->
    unfolds H a k t t' ->
    unfolds H a k (s t) (s' t').

Definition unfolds_ind' (H : Heap) (P : HAdd -> nat -> term -> term -> Prop)
(f : forall (a : HAdd) (k n : nat), n < k -> P a k n n)
(f0 : forall (a : HAdd) (k : nat) (b : HAdd) (P0 : list Tok)
      (s s' : term) (n : nat),
      n >= k ->
      lookup H a (n - k) = Some (b, P0) ->
      P0 = compile s -> unfolds H b 1 s s' -> P b 1 s s' -> P a k n (lam s'))
(f1 : forall (a : HAdd) (k : nat) (s s' : term),
      unfolds H a (S k) s s' -> P a (S k) s s' -> P a k (lam s) (lam s'))
(f2 : forall (a : HAdd) (k : nat) (s t s' t' : term),
      unfolds H a k s s' ->
      P a k s s' -> unfolds H a k t t' -> P a k t t' -> P a k (s t) (s' t'))
      : forall (a : HAdd) (n : nat) (t t0 : term),
      unfolds H a n t t0 -> P a n t t0.
Proof.
  intros a n s t. induction t in a,n,s,t|-*;intros Ht.
  all:inv Ht.
  all:eauto.
  -now inv H2.
  -now inv H2.
  -inv H2. inv H3. eapply f0. all:try reflexivity;try eassumption. eauto.
Qed.

Definition unfolds_rect (H : Heap) (P : HAdd -> nat -> term -> term -> Type)
(f : forall (a : HAdd) (k n : nat), n < k -> P a k n n)
(f0 : forall (a : HAdd) (k : nat) (b : HAdd) (P0 : list Tok)
      (s s' : term) (n : nat),
      n >= k ->
      lookup H a (n - k) = Some (b, P0) ->
      P0 = compile s -> unfolds H b 1 s s' -> P b 1 s s' -> P a k n (lam s'))
(f1 : forall (a : HAdd) (k : nat) (s s' : term),
      unfolds H a (S k) s s' -> P a (S k) s s' -> P a k (lam s) (lam s'))
(f2 : forall (a : HAdd) (k : nat) (s t s' t' : term),
      unfolds H a k s s' ->
      P a k s s' -> unfolds H a k t t' -> P a k t t' -> P a k (s t) (s' t'))
      : forall (a : HAdd) (n : nat) (t t0 : term),
      unfolds H a n t t0 -> P a n t t0.
Proof.
  intros a n s t. induction t in a,n,s,t|-*;intros Ht.
  -enough (s=n0). {subst;apply f;inv Ht. easy. now inv H5. } inv Ht. easy. now inv H3.
  -destruct s. 3:now exfalso. 1:{ exfalso;inv Ht. now inv H5. }
   eapply f2. 2:eapply IHt1. 4:eapply IHt2. all:now inv Ht.
  -destruct s. 2:now exfalso.
    + destruct (lookup H a (n0 - n)) as [[b Q]|] eqn:Hlook.
    2:{ exfalso;inv Ht. congruence. }
    destruct (decompile 0 Q []) as [[|s]|]eqn:HQ.
    1,3:now exfalso; inv Ht; rewrite Hlook in H2; injection H2 as [= -> ->]; inv H3; now rewrite decompile_correct in HQ.
    eapply f0. now inv Ht. eassumption.
      3:eapply IHt.
      all:inv Ht; rewrite Hlook in H2; injection H2 as [= <- <-]; inv H3; rewrite decompile_correct in HQ.
      injection HQ as [= ->]. reflexivity. all:now inv H5.
    + eapply f1. now inv Ht. eapply IHt. now inv Ht.
Qed.

Lemma unfolds_bound H k s s' a:
  unfolds H a k s s'
  -> bound k s'.
Proof.
  induction 1.
  -now constructor.
  -inv H2. inv H3. constructor. inv IHunfolds. eapply bound_ge. eauto. lia.
  -now constructor.
  -now constructor.
Qed.

Inductive reprC : Heap -> _ -> term -> Prop :=
  reprCC H P s a s' :
    reprP P s ->
    unfolds H a 0 s s' ->
    reprC H (a,P) s'.

Lemma reprC_elim H g s': reprC H g s' -> { s | reprP (snd g) s /\ unfolds H (fst g) 0 s s'}.
Proof.
  destruct g as [a Q];cbn. intros Hg.
  destruct (decompile 0 Q []) as [[|s]|] eqn:H'.
  1,3:now exfalso; inv Hg; inv H4; rewrite decompile_correct in H'.
  exists (lam s). inv Hg; inv H4; rewrite decompile_correct in H'. inv H'.
  now split.
Qed.

Lemma reprC_elim_deep H g t:
  reprC H g t
  -> exists s t' a, g = (a,compile s) /\ t = lam t' /\ unfolds H a 1 s t'.
Proof.
  intros (s&HP&?Hu)%reprC_elim. apply reprP_elim in HP as (?&?&?).
  destruct g. cbn in *. subst. inv Hu. eauto 10.
Qed.

Lemma unfolds_inv_lam_lam H a k s s': unfolds H a k (lam s) (lam s') -> unfolds H a (S k) s s'.
Proof. now inversion 1. Qed.

Lemma unfolds_subst' H s s' t' a a' k g:
  nth_error (A:=HEntr) H a' = Some (Some (g,a)) ->
  reprC H g t' ->
  unfolds H a (S k) s s' ->
  unfolds H a' k s (subst s' k t').
Proof.
  intros H1 R I__s. remember (S k) as k' eqn:eq__k.
  induction I__s in H1,k,eq__k|-*. all:subst k0.
  -cbn. destruct (Nat.eqb_spec n k).
   +assert (H':lookup H a' (n-k) = Some g).
    {subst n. cbn. rewrite Nat.sub_diag. cbn. rewrite H1. reflexivity. }
    inv R.
    decide _.
    econstructor. all:eauto.
    econstructor. all:eauto.
   +decide _. econstructor; eauto. lia.
    econstructor. lia.
  -rename s into u.
   assert (H':lookup H a' (n-k) = Some (b,P)).
   {destruct n. lia. rewrite Nat.sub_succ_l. cbn. rewrite H1. now rewrite Nat.sub_succ in H2. lia. }
   rewrite bound_closed_k.
   2:{ eapply bound_ge with (k:=0). 2:lia. now eauto using unfolds_bound. }
   econstructor. all:try eassumption;lia.
  -econstructor. all:eauto.
  -econstructor. all:eauto.
   Unshelve. all: repeat econstructor.
Qed.

Lemma unfolds_subst H s s' t' a a' g:
  nth_error H a' = Some (Some (g,a)) ->
  reprC H g t' ->
  unfolds H a 1 s s' ->
  unfolds H a' 0 s (subst s' 0 t').
Proof.
  apply unfolds_subst'.
Qed.

Lemma bound_unfolds_id H k s a:
  bound k s ->
  unfolds H a k s s.
Proof.
  induction 1.
  -now constructor.
  -now constructor.
  -now constructor.
Qed.

Instance extended_PO :
  PreOrder extended.
Proof.
  unfold extended;split;repeat intro. all:eauto.
Qed.

Typeclasses Opaque extended.

Lemma lookup_extend H H' a x g:
  extended H H' -> lookup H a x = Some g -> lookup H' a x = Some g.
Proof.
  induction x in H,H',a,g|-*;intros H1 H2.
  all:cbn in H2|-*.
  all:destruct nth_error as [[[]|]|]eqn:H3.
  all:try congruence.
  all:try rewrite (H1 _ _ H3).
  all:try congruence.
  eapply IHx;eauto.
Qed.

Lemma unfolds_extend H H' a s t k :
  extended H H' ->
  unfolds H a k s t ->
  unfolds H' a k s t.
Proof.
  induction 2.
  all:econstructor. 1-2,4-8:now eauto. erewrite lookup_extend;eauto.
Qed.

Instance unfold_extend_Proper : Proper (extended ==> eq ==> eq ==> eq ==> eq ==>Basics.impl) unfolds.
Proof.
  repeat intro. subst. eapply unfolds_extend. all:eassumption.
Qed.

Lemma reprC_extend H H' g s:
  extended H H' ->
  reprC H g s ->
  reprC H' g s.
Proof.
  inversion 2. subst. eauto using reprC, unfolds_extend.
Qed.

Instance reprC_extend_Proper : Proper (extended ==> eq ==> eq ==>Basics.impl) reprC.
Proof.
  repeat intro. subst. eapply reprC_extend. all:eassumption.
Qed.


Lemma completenessInformative' s t k s0 P a T V H:
  timeBS k s t -> unfolds H a 0 s0 s ->
  {g & {l &{H' & reprC H' g t
            /\ pow step l ((a,compile s0++P)::T,V,H)
                  (tailRecursion (a,P) T,g::V,H') /\ l = 3*k+1 /\ extended H H'}}}.
Proof.
  intros Ev. revert s0 P a T V H.
  induction Ev using timeBS_rect;intros * R.
  -destruct s0. 2:now exfalso.
   +edestruct (lookup H a n) as [[b Q]|] eqn:?. 2:{exfalso;inv R;rewrite Nat.sub_0_r in *;congruence. }
    eexists (b,Q),1,H.
    repeat split.
    *inv R. rewrite Nat.sub_0_r in *. exists s0. all:congruence.
    *cbn [compile]. rewrite <- rcomp_1. now econstructor.
    *hnf. tauto.
   +eexists (a,compile _),1,H.
    repeat split.
    *inv R. eauto using reprC,reprP,unfolds.
    *cbn [compile Datatypes.app]; autorewrite with list;cbn [Datatypes.app].
     rewrite <- rcomp_1. constructor. apply jumpTarget_correct.
    *hnf. tauto.
  -destruct s0. 1,3:exfalso;inv R. now inv H6.
   rename s0_1 into t1, s0_2 into t2.
   assert (I__s : unfolds H0 a 0 t1 s) by now inv R.
   assert (I__t : unfolds H0 a 0 t2 t) by now inv R.
   cbn [compile List.app]; autorewrite with list; cbn [List.app].
   specialize (IHEv1 _ (compile t2 ++ appT ::P) _ T V _ I__s)
     as ([a2 P__temp]&k1&Heap1&rep1&R1&eq_k1&Ext1).
   eapply reprC_elim in rep1 as (?&?&I__s');cbn [fst snd]in *.
   destruct x. 1,2:now exfalso. eapply unfolds_inv_lam_lam in I__s'.
   replace P__temp with (compile x) in * by now inv H1. clear H1.

   apply (unfolds_extend Ext1) in I__t.
   specialize (IHEv2 _ (appT ::P) _ T ((a2,compile x)::V) _ I__t)
     as (g__t&k2&Heap2&rep2&R2&e_k2&Ext2).
   edestruct (put Heap2 (Some(g__t,a2))) as [a2' Heap2'] eqn:eq.
   assert (Ext2' := (put_extends eq)).
   apply ( reprC_extend Ext2') in rep2.
   apply ( unfolds_extend Ext2) in I__s'. apply ( unfolds_extend Ext2') in I__s'.
   eassert (I__subst := unfolds_subst (get_current eq) rep2 I__s').
   edestruct (IHEv3 _ [] _ (tailRecursion (a,P) T) V _ I__subst) as (g__u&k3&Heap3&rep3&R3&eq_k3&Ext3).
   eexists g__u,_,Heap3.
   split;[ | split;[|split]].
   +eassumption.
   +apply pow_add. eexists. split.
    { exact R1. }
    apply pow_add. eexists. split.
    { rewrite tailRecursion_compile. exact R2. }
    apply pow_add. eexists. split.
    { apply (rcomp_1 step). constructor;eassumption. }
    { rewrite app_nil_r in R3. exact R3. }
   + nia.
   +rewrite Ext1,Ext2,Ext2',Ext3. reflexivity.
Qed.

Definition init s :state := ([(0,compile s)],[],[]).

Lemma completenessTimeInformative s t k:
  timeBS k s t -> closed s ->
  { g & { H | reprC H g t
          /\ pow step (3*k+1) (init s)
               ([],[g],H)}}.
Proof.
  intros H1 H2.
  edestruct (completenessInformative' (s0:=s) (a:=0) (H:=[]) [] [] [] H1)
    as (g&?&H'&rep&R&->&_).
  -apply bound_unfolds_id. eauto using closed_k_bound.
  -autorewrite with list in R.
   exists g,H'. split. assumption.
   exact R.
Qed.

Lemma completeness' s t k s0 P a T V H:
  
  timeBS k s t -> unfolds H a 0 s0 s ->
  exists g l H', reprC H' g t
            /\ pow step l ((a,compile s0++P)::T,V,H)
                  (tailRecursion (a,P) T,g::V,H') /\ l = 3*k+1 /\ extended H H'.
Proof.
  intros. edestruct completenessInformative' as (?&?&?&?);eauto.
Qed.

Lemma completenessTime s t k:
  timeBS k s t -> closed s ->
  exists g H, reprC H g t
         /\ pow step (3*k+1) (init s)
               ([],[g],H).

Proof.
  intros. edestruct completenessTimeInformative as (?&?&?);eauto.
Qed.

Lemma completeness s t:
  eval s t -> closed s ->
  exists g H, reprC H g t
         /\ star step (init s)
               ([],[g],H).

Proof.
  intros (n&H1%timeBS_evalIn)%eval_evalIn H2.
  edestruct completenessTime as (?&?&?&?%pow_star). 1,2:easy.
  do 3 eexists. all:easy.
Qed.


Lemma soundness' s0 s P a T V H k sigma:
  evaluatesIn step k ((a,compile s0++P)::T,V,H) sigma ->
  unfolds H a 0 s0 s ->
  exists k1 k2 g H' t n , k = k1 + k2
                     /\ pow step k1 ((a,compile s0++P)::T,V,H) (tailRecursion (a,P) T,g::V,H')
                     /\ evaluatesIn step k2 (tailRecursion (a,P) T,g::V,H') sigma
                     /\ timeBS n s t
                     /\ extended H H'
                     /\ reprC H' g t
                     /\ k1 = 3*n + 1.
Proof.
  intros [R Ter].
  unfold HClos in *.
  revert s s0 P a T V H R.
  induction k as [k IH] using lt_wf_ind .
  intros s s0 P a T V H R Unf.
  induction s0 as [|s01 IHs01 s02 IHs02 | s0] in IH,k,s,Unf,T,R,P,V,H|-*.
  -inv Unf. lia.
   assert (exists k', k = 1 + k') as (k'&->).
   {destruct k. 2:eauto. exfalso.
    inv R. eapply Ter. econstructor. rewrite Nat.sub_0_r in *. eassumption. }
   apply pow_add in R as (?&R1&R2).
   apply rcomp_1 in R1. inv R1.
   rewrite Nat.sub_0_r in *. rewrite H12 in H2. inv H2.
   inv H3. inv H5.
   repeat esplit.
   +cbn. constructor. eassumption.
   +eassumption.
   +eauto.
   +econstructor.
   +reflexivity.
   + eauto using unfolds.
   +lia.
  -cbn in R. inversion Unf as [| | | tmp1 tmp2 tmp3 tmp4 tmp5 Unf1 Unf2]. subst tmp1 tmp2 tmp3 s.
   rewrite <- !app_assoc in R.
   pose (R':=R).
   eapply IHs01 in R' as (k11&k12&[a' s1']&H'1&t1&n1&eq1&R11&[R12 _]&Ev1&Ext1&Rg1&eqn1). 3:eassumption.
   rewrite tailRecursion_compile in R12.

   pose (R':=R12).
   eapply IHs02 in R' as (k21&k22&g2&H'2&t2&n2&eq2&R21&[R22 _]&Ev2&Ext2&Rg2&eqn2).
   3-4:now eauto using unfolds_extend.
   2:{ intros. eapply IH. lia. all:eauto. }
   setoid_rewrite Ext2 in Rg1.
   cbn in R22.
   assert (exists k22', k22 = 1 + k22') as (k22'&->).
   {destruct k22. 2:eauto. exfalso.
    inv R22. eapply Ter. econstructor. reflexivity. }
   pose (R':=R22).
   apply pow_add in R' as (?&R2'&R3).
   apply rcomp_1 in R2'. inversion R2' as [ | AA BB CC DD EE KK H3' b GG HH eqH'2 JJ| ]. subst AA BB CC EE GG HH DD KK. subst x.
   specialize (put_extends eqH'2) as Ext3.
   inversion Rg1 as [AA BB t1'0 CC t1' Unft']. subst AA BB CC t1.
   destruct Unft'. inversion H0 as [| | AA BB t1'' unf''' EE FF |]. subst AA BB t1'. clear H0.
   edestruct IH with (P:=@nil Tok) as (k31&k32&g3&H'3&t3&n3&eq3&R31&[R32 _]&Ev3&Ext3'&Rg3&eqn3).
   2:{ autorewrite with list. exact R3. } now nia.
   {
    eapply unfolds_subst.
    -eauto using get_current.
    -now rewrite <- Ext3.
    -eapply unfolds_extend. 2:eassumption. easy.
   }
   unfold tailRecursion at 1 in R32.
   inversion Rg2 as [AAA BBB CCC DDD EEE FFF GGG HHH III]. subst AAA g2 EEE. inversion FFF. subst BBB CCC. inversion GGG. subst t2.
   inversion Rg3 as [AA BB CC DD EE FF]. subst g3 AA EE. destruct FF.    eexists (k11+(k21+(1+k31))),k32,_,_,_.
   repeat eexists.
   +lia.
   +cbn [compile]. autorewrite with list.
    rewrite app_nil_r in R31. unfold tailRecursion in R31 at 2.
    repeat (eapply pow_add with (R:=step);eexists;split).
    *eassumption.
    *rewrite tailRecursion_compile. eassumption.
    *cbn. eapply rcomp_1 with (R:=step). constructor. eassumption.
    *eassumption.
   +eassumption.
   +eassumption.
   + econstructor. all:eauto.
   +now rewrite Ext1,Ext2,Ext3.
   +eauto using unfolds.
   +lia.
  -inv Unf.
   assert (exists k', k = 1 + k') as (k'&->).
   {destruct k. 2:eauto. exfalso.
    inv R. eapply Ter. cbn. econstructor. autorewrite with list. eapply jumpTarget_correct. }
   apply pow_add in R as (?&R1&R2).
   apply rcomp_1 in R1. inv R1.
   autorewrite with list in H8. cbn in H8. rewrite jumpTarget_correct in H8. inv H8.
   eexists 1,k',_,_,_.
   repeat esplit.
   +cbn. constructor. autorewrite with list. apply jumpTarget_correct.
   +eassumption.
   +eauto.
   +constructor.
   +reflexivity.
   +eauto using unfolds.
   +lia.
Qed.

Lemma soundnessTime' s sigma k V a s0 H:
  evaluatesIn step k ([(a,compile s0)],V,H) sigma ->
  unfolds H a 0 s0 s ->
  exists g H' t n , pow step k ([(a,compile s0)],V,H) sigma
                    /\ sigma = ([],g::V,H')
                    /\ timeBS n s t
                    /\ extended H H'
                    /\ reprC H' g t
                    /\ k = 3*n + 1.
Proof.
  intros cs ?.
  edestruct soundness' with (P:=@nil Tok) as (k1&k2&g&H'&t&eq&R1&?&[R2 ?]&Ev&?&Rgt&->).
  all:try rewrite app_nil_r in *. 1,2:easy.
  -cbn in R2.
    assert (k2 = 0) as ->.
   {destruct k2. eauto. exfalso.
    destruct R2 as (?&R'&?). inv R'. }
   inv R2. cbn [tailRecursion] in H1.
   eexists _,_,_. eexists. repeat eapply conj. all:eauto. now rewrite -> Nat.add_0_r.
Qed.

Lemma soundnessTime s sigma k:
  closed s ->
  evaluatesIn step k (init s) sigma ->
  exists g H t n, sigma = ([],[g],H) /\ timeBS n s t /\ reprC H g t /\ k = 3*n+1.
Proof.
  intros cs ?.
  edestruct soundnessTime' as (g&H'&t&n&R1&->&?&?&?&->).
  -easy.
  -apply bound_unfolds_id. eapply closed_dcl. eassumption.
  -eexists _,_,_. all:eauto.
Qed.

Lemma soundness s sigma:
  closed s ->
  evaluates step (init s) sigma ->
  exists g H t, sigma = ([],[g],H) /\ eval s t /\ reprC H g t.
Proof.
  intros cs (?&H')%evalevaluates_evaluatesIn.
  apply soundnessTime in H'. destruct H' as (?&?&?&?&->&R&?&->). 2:eauto.
  do 5 eexists. 2:easy. now eapply evalIn_eval_subrelation, timeBS_evalIn.
Qed.