Require Import List Arith Lia.
From Undecidability.Shared.Libs.DLW
Require Import utils pos vec subcode sss.
From Undecidability.MinskyMachines Require Export MM.
Set Default Proof Using "Type".
Set Implicit Arguments.
Tactic Notation "rew" "length" := autorewrite with length_db.
Local Notation "e #> x" := (vec_pos e x).
Local Notation "e [ v / x ]" := (vec_change e x v).
Section Minsky_Machine_alternate.
Variable (n : nat).
Notation "i // s -1> t" := (@mma_sss n i s t).
Notation "P // s -[ k ]-> t" := (sss_steps (@mma_sss n) P k s t).
Notation "P // s -+> t" := (sss_progress (@mma_sss n) P s t).
Notation "P // s ->> t" := (sss_compute (@mma_sss n) P s t).
Fact mma_sss_fun i s t1 t2 : i // s -1> t1 -> i // s -1> t2 -> t1 = t2.
Proof.
intros []; subst.
inversion 1; subst; auto.
inversion 1; subst; auto.
rewrite H in H6; discriminate.
inversion 1; subst; auto.
rewrite H in H6; discriminate.
rewrite H in H6; inversion H6; subst; auto.
Qed.
Fact mma_sss_total ii s : { t | ii // s -1> t }.
Proof.
destruct s as (i,v).
destruct ii as [ x | x j ]; [ | case_eq (v#>x); [ | intros k ]; intros E ].
* exists (1+i,v[(S (v#>x))/x]); constructor.
* exists (1+i,v); constructor; auto.
* exists (j,v[k/x]); constructor; auto.
Qed.
Fact mma_sss_total_ni ii s : exists t, ii // s -1> t.
Proof.
destruct (mma_sss_total ii s) as (t & ?); now exists t.
Qed.
Fact mma_sss_INC_inv x i v j w : INC x // (i,v) -1> (j,w) -> j=1+i /\ w = v[(S (v#>x))/x].
Proof. inversion 1; subst; auto. Qed.
Fact mma_sss_DEC0_inv x k i v j w : v#>x = O -> DEC x k // (i,v) -1> (j,w) -> j = 1+i /\ w = v.
Proof.
intros H; inversion 1; subst; auto; rewrite H in H2; try discriminate.
Qed.
Fact mma_sss_DEC1_inv x k u i v j w : v#>x = S u -> DEC x k // (i,v) -1> (j,w) -> j=k /\ w = v[u/x].
Proof.
intros H; inversion 1; subst; auto; rewrite H in H2; try discriminate.
inversion H2; subst; auto.
Qed.
Fact mma_sss_progress_INC P i x v st :
(i,INC x::nil) <sc P
-> P // (1+i,v[(S (v#>x))/x]) ->> st
-> P // (i,v) -+> st.
Proof.
intros H1 H2.
apply sss_progress_compute_trans with (2 := H2).
apply subcode_sss_progress with (1 := H1).
exists 1; split; auto; apply sss_steps_1.
apply in_sss_step with (l := nil).
simpl; lia.
constructor; auto.
Qed.
Corollary mma_sss_compute_INC P i x v st : (i,INC x::nil) <sc P -> P // (1+i,v[(S (v#>x))/x]) ->> st -> P // (i,v) ->> st.
Proof. intros; apply sss_progress_compute; eapply mma_sss_progress_INC; eauto. Qed.
Fact mma_sss_progress_DEC_0 P i x k v st :
(i,DEC x k::nil) <sc P
-> v#>x = O
-> P // (1+i,v) ->> st
-> P // (i,v) -+> st.
Proof.
intros H1 H2 H3.
apply sss_progress_compute_trans with (2 := H3).
apply subcode_sss_progress with (1 := H1).
exists 1; split; auto; apply sss_steps_1.
apply in_sss_step with (l := nil).
simpl; lia.
constructor; auto.
Qed.
Corollary mma_sss_compute_DEC_0 P i x k v st : (i,DEC x k::nil) <sc P -> v#>x = O -> P // (1+i,v) ->> st -> P // (i,v) ->> st.
Proof. intros; apply sss_progress_compute; eapply mma_sss_progress_DEC_0; eauto. Qed.
Fact mma_sss_progress_DEC_S P i x k v u st :
(i,DEC x k::nil) <sc P
-> v#>x = S u
-> P // (k,v[u/x]) ->> st
-> P // (i,v) -+> st.
Proof.
intros H1 H2 H3.
apply sss_progress_compute_trans with (2 := H3).
apply subcode_sss_progress with (1 := H1).
exists 1; split; auto; apply sss_steps_1.
apply in_sss_step with (l := nil).
simpl; lia.
constructor; auto.
Qed.
Corollary mma_sss_compute_DEC_S P i x k v u st : (i,DEC x k::nil) <sc P -> v#>x = S u -> P // (k,v[u/x]) ->> st -> P // (i,v) ->> st.
Proof. intros; apply sss_progress_compute; eapply mma_sss_progress_DEC_S; eauto. Qed.
Fact mma_sss_steps_INC_inv k P i x v st :
(i,INC x::nil) <sc P
-> k <> 0
-> P // (i,v) -[k]-> st
-> exists k', k' < k /\ P // (1+i,v[(S (v#>x))/x]) -[k']-> st.
Proof.
intros H1 H2 H4.
apply sss_steps_inv in H4.
destruct H4 as [ (? & ?) | (k' & st2 & ? & H4 & H5) ]; subst; auto.
destruct H2; auto.
apply sss_step_subcode_inv with (1 := H1) in H4.
exists k'; split.
lia.
inversion H4; subst; auto.
Qed.
Fact mma_sss_steps_DEC_0_inv k P i x p v st :
(i,DEC x p::nil) <sc P
-> k <> 0
-> v#>x = 0
-> P // (i,v) -[k]-> st
-> exists k', k' < k /\ P // (1+i,v) -[k']-> st.
Proof.
intros H1 H2 H3 H4.
apply sss_steps_inv in H4.
destruct H4 as [ (? & ?) | (k' & st2 & ? & H4 & H5) ]; subst; auto.
destruct H2; auto.
apply sss_step_subcode_inv with (1 := H1) in H4.
exists k'; split.
lia.
inversion H4; subst; auto.
rewrite H3 in H9; discriminate.
Qed.
Fact mma_sss_steps_DEC_1_inv k P i x p v u st :
(i,DEC x p::nil) <sc P
-> k <> 0
-> v#>x = S u
-> P // (i,v) -[k]-> st
-> exists k', k' < k /\ P // (p,v[u/x]) -[k']-> st.
Proof.
intros H1 H2 H3 H4.
apply sss_steps_inv in H4.
destruct H4 as [ (? & ?) | (k' & st2 & ? & H4 & H5) ]; subst; auto.
destruct H2; auto.
apply sss_step_subcode_inv with (1 := H1) in H4.
exists k'; split.
lia.
inversion H4; subst; auto; rewrite H3 in H9.
discriminate.
inversion H9; subst; auto.
Qed.
End Minsky_Machine_alternate.
Local Notation "i // s -1> t" := (@mma_sss _ i s t).
Local Notation "P // s -[ k ]-> t" := (sss_steps (@mma_sss _) P k s t).
Local Notation "P // s -+> t" := (sss_progress (@mma_sss _) P s t).
Local Notation "P // s ->> t" := (sss_compute (@mma_sss _) P s t).
Local Notation "P // s ~~> t" := (sss_output (@mma_sss _) P s t).
Local Notation "P // s ↓" := (sss_terminates (@mma_sss _) P s).
Tactic Notation "mma" "sss" "INC" "with" uconstr(a) :=
match goal with
| |- _ // _ -+> _ => apply mma_sss_progress_INC with (x := a)
| |- _ // _ ->> _ => apply mma_sss_compute_INC with (x := a)
end; auto.
Tactic Notation "mma" "sss" "DEC" "0" "with" uconstr(a) uconstr(b) :=
match goal with
| |- _ // _ -+> _ => apply mma_sss_progress_DEC_0 with (x := a) (k := b)
| |- _ // _ ->> _ => apply mma_sss_compute_DEC_0 with (x := a) (k := b)
end; auto.
Tactic Notation "mma" "sss" "DEC" "S" "with" uconstr(a) uconstr(b) uconstr(c) :=
match goal with
| |- _ // _ -+> _ => apply mma_sss_progress_DEC_S with (x := a) (k := b) (u := c)
| |- _ // _ ->> _ => apply mma_sss_compute_DEC_S with (x := a) (k := b) (u := c)
end; auto.
Tactic Notation "mma" "sss" "stop" := exists 0; apply sss_steps_0; auto.