Require Import List Arith Lia.

From Undecidability.Shared.Libs.DLW.Utils Require Import utils.
From Undecidability.Shared.Libs.DLW.Code Require Import subcode sss compiler.


Set Implicit Arguments.

Section comp.


  Variable (X Y : Set)
           (icomp : (nat -> nat) -> nat -> X -> list Y)
           (ilen : X -> nat)
           (Hilen : forall lnk n x, length (icomp lnk n x) = ilen x)
           .

  Variables (state_X state_Y : Type)
            (step_X : X -> (nat*state_X) -> (nat*state_X) -> Prop)
            (step_Y : Y -> (nat*state_Y) -> (nat*state_Y) -> Prop).

  Notation "ρ '/X/' s -1> t" := (step_X ρ s t) (at level 70, no associativity).
  Notation "P '/X/' s '-[' k ']->' t" := (sss_steps step_X P k s t) (at level 70, no associativity).
  Notation "P '/X/' s '-+>' t" := (sss_progress step_X P s t) (at level 70, no associativity).
  Notation "P '/X/' s ->> t" := (sss_compute step_X P s t) (at level 70, no associativity).
  Notation "P '/X/' s '~~>' t" := (sss_output step_X P s t) (at level 70, no associativity).
  Notation "P '/X/' s ↓" := (sss_terminates step_X P s)(at level 70, no associativity).

  Notation "ρ '/Y/' s -1> t" := (step_Y ρ s t) (at level 70, no associativity).
  Notation "P '/Y/' s '-[' k ']->' t" := (sss_steps step_Y P k s t) (at level 70, no associativity).
  Notation "P '/Y/' s '-+>' t" := (sss_progress step_Y P s t) (at level 70, no associativity).
  Notation "P '/Y/' s ->> t" := (sss_compute step_Y P s t) (at level 70, no associativity).
  Notation "P '/Y/' s '~~>' t" := (sss_output step_Y P s t) (at level 70, no associativity).
  Notation "P '/Y/' s ↓" := (sss_terminates step_Y P s)(at level 70, no associativity).


  Hypothesis (step_X_tot : forall I st1, exists st2, I /X/ st1 -1> st2)
             (step_Y_fun : forall I st st1 st2, I /Y/ st -1> st1 -> I /Y/ st -1> st2 -> st1 = st2).


  Variable (simul : state_X -> state_Y -> Prop).

  Infix "⋈" := simul (at level 70, no associativity).


  Definition instruction_compiler_sound := forall lnk I i1 v1 i2 v2 w1,
                     I /X/ (i1,v1) -1> (i2,v2)
                  -> lnk (1+i1) = length (icomp lnk i1 I) + lnk i1
                  -> v1 w1
       -> exists w2, (lnk i1,icomp lnk i1 I) /Y/ (lnk i1,w1) -+> (lnk i2,w2)
                  /\ v2 w2.

  Hypothesis Hicomp : instruction_compiler_sound.

  Section correctness.


    Variables (linker : nat -> nat) (P : nat * list X) (Q : nat * list Y)
              (HPQ : forall i I, (i,I::nil) <sc P -> (linker i, icomp linker i I) <sc Q
                                                   /\ linker (1+i) = ilen I + linker i).


    Theorem compiler_sound i1 v1 i2 v2 w1 :
                      v1 w1 /\ P /X/ (i1,v1) ->> (i2,v2)
        -> exists w2, v2 w2 /\ Q /Y/ (linker i1,w1) ->> (linker i2,w2).
    Proof.
      change i1 with (fst (i1,v1)) at 2; change v1 with (snd (i1,v1)) at 1.
      change i2 with (fst (i2,v2)) at 2; change v2 with (snd (i2,v2)) at 2.
      generalize (i1,v1) (i2,v2); clear i1 v1 i2 v2.
      intros st1 st2 (H1 & q & H2); revert H2 w1 H1.
      induction 1 as [ (i1,v1) | q (i1,v1) (i2,v2) st3 H1 H2 IH2]; simpl; intros w1 H0.
      + exists w1; split; auto; exists 0; constructor.
      + destruct H1 as (k & l & I & r & v' & G1 & G2 & G3).
        inversion G2; subst v' i1; clear G2.
        destruct (Hicomp linker) with (1 := G3) (3 := H0)
          as (w2 & G4 & G5).
        * rewrite Hilen; apply HPQ; subst; exists l, r; auto.
        * destruct (IH2 _ G5) as (w3 & G6 & G7).
          exists w3; split; auto.
          apply sss_compute_trans with (2 := G7); simpl.
          apply sss_progress_compute.
          revert G4; apply subcode_sss_progress.
          apply HPQ; subst; exists l, r; auto.
    Qed.


    Local Lemma compiler_complete_step p st1 w1 w3 :
           snd st1 snd w1
        -> linker (fst st1) = fst w1
        -> in_code (fst st1) P
        -> out_code (fst w3) Q
        -> Q /Y/ w1 -[p]-> w3
        -> exists q st2 w2, snd st2 snd w2
                        /\ linker (fst st2) = fst w2
                        /\ P /X/ st1 ->> st2
                        /\ Q /Y/ w2 -[q]-> w3
                        /\ q < p.
    Proof.
      revert st1 w1 w3; intros (i1,v1) (j1,w1) (j3,w3); simpl fst; simpl snd.
      intros H1 H2 H3 H4 H5.
      destruct (in_code_subcode H3) as (I & HI).
      destruct HPQ with (1 := HI) as (H6 & H7).
      assert (out_code j3 (linker i1, icomp linker i1 I)) as G2.
      { revert H4; apply subcode_out_code; auto. }
      assert (H8 : ilen I <> 0).
      { intros H.
        destruct (step_X_tot I (i1,v1)) as ((i2,v2) & Hst).
        apply (Hicomp linker) with (3 := H1) in Hst; auto.
        2: rewrite Hilen; auto.
        destruct Hst as (w2 & (q & Hq1 & Hq2) & _).
        rewrite <- (Hilen linker i1) in H.
        destruct (icomp linker i1 I); try discriminate.
        apply sss_steps_stall, proj1 in Hq2; simpl; lia. }
      assert (in_code (linker i1) (linker i1, icomp linker i1 I)) as G3.
      { simpl; rewrite (Hilen linker i1 I); lia. }
      rewrite <- H2 in H5.
      destruct (step_X_tot I (i1,v1)) as ((i2,v2) & G4).
      destruct (Hicomp linker) with (1 := G4) (3 := H1) as (w2 & G5 & G6).
      * rewrite H7, Hilen; auto.
      * apply subcode_sss_progress_inv with (3 := H6) (4 := G5) in H5; auto.
        destruct H5 as (q & H5 & G7).
        exists q, (i2,v2), (linker i2, w2); simpl; repeat (split; auto).
        apply subcode_sss_compute with (1 := HI).
        exists 1; apply sss_steps_1.
        exists i1, nil, I, nil, v1; repeat (split; auto).
        f_equal; simpl; lia.
    Qed.


    Theorem compiler_complete i1 v1 w1 :
          v1 w1 -> Q /Y/ (linker i1,w1) -> P /X/ (i1,v1) .
    Proof.
      intros H1 (st & (q & H2) & H3).
      revert i1 v1 w1 H1 H2 H3.
      induction q as [ q IHq ] using (well_founded_induction lt_wf).
      intros i1 v1 w1 H1 H2 H3.
      destruct (in_out_code_dec i1 P) as [ H4 | H4 ].
      + destruct compiler_complete_step with (5 := H2) (st1 := (i1,v1))
          as (p & (i2,v2) & (j2,w2) & G1 & G2 & G3 & G4 & G5); auto; simpl in *; subst j2.
        destruct IHq with (1 := G5) (2 := G1) (3 := G4)
          as ((i3 & v3) & F3 & F4); auto.
        exists (i3,v3); repeat (split; auto).
        apply sss_compute_trans with (1 := G3); auto.
      + exists (i1,v1); repeat (split; auto).
        exists 0; constructor.
    Qed.

    Corollary compiler_complete' i1 v1 w1 st :
                            v1 w1 /\ Q /Y/ (linker i1,w1) ~~> st
        -> exists i2 v2 w2, v2 w2 /\ P /X/ (i1,v1) ~~> (i2,v2)
                                    /\ Q /Y/ (linker i2,w2) ~~> st.
    Proof.
      intros (H1 & H2).
      destruct compiler_complete with (1 := H1) (2 := ex_intro (fun x => Q /Y/ (linker i1, w1) ~~> x) _ H2)
        as ((i2,v2) & H3 & H4).
      exists i2, v2.
      destruct (compiler_sound (conj H1 H3)) as (w2 & H5 & H6).
      exists w2; do 2 (split; auto).
      split; auto.
      destruct H2 as (H2 & H0); split; auto.
      apply sss_compute_inv with (3 := H6); auto.
    Qed.

  End correctness.



  Variable (P : nat * list X) (iQ : nat).

  Let iP := fst P.
  Let cP := snd P.

  Let err := iQ+length_compiler ilen cP.

  Definition gen_linker := linker ilen (iP,cP) iQ err.
  Definition gen_compiler := compiler icomp ilen (iP,cP) iQ err.

  Notation cQ := gen_compiler.
  Notation lnk := gen_linker.

  Let P_eq : P = (iP,cP).
  Proof. unfold iP, cP; destruct P; auto. Qed.

  Fact gen_linker_out i : out_code i (iP,cP) -> lnk i = iQ+length cQ.
  Proof.
    intros H.
    unfold lnk.
    rewrite linker_out_err; unfold err; simpl; auto.
    * unfold cQ; rewrite compiler_length; auto.
    * lia.
  Qed.

  Theorem gen_compiler_sound i1 v1 i2 v2 w1 :
                    v1 w1 /\ (iP,cP) /X/ (i1,v1) ~~> (i2,v2)
      -> exists w2, v2 w2 /\ (iQ,cQ) /Y/ (lnk i1,w1) ~~> (lnk i2,w2).
  Proof.
    intros (H1 & H2 & H3).
    destruct compiler_sound with (2 := conj H1 H2) (linker := gen_linker) (Q := (iQ,cQ))
      as (w2 & G1 & G2).
    + apply compiler_subcode; auto.
    + simpl fst in H3.
      exists w2; split; auto.
      split; auto; simpl.
      rewrite <- gen_linker_out with i2; auto.
  Qed.

  Theorem gen_compiler_complete i1 v1 w1 :
            v1 w1 -> (iQ,gen_compiler) /Y/ (gen_linker i1,w1) -> (iP,cP) /X/ (i1,v1) .
  Proof.
    apply compiler_complete, compiler_subcode; auto.
  Qed.

  Corollary gen_compiler_output v w i' v' :
        v w -> (iP,cP) /X/ (iP,v) ~~> (i',v') -> exists w', (iQ,gen_compiler) /Y/ (iQ,w) ~~> (code_end (iQ,cQ),w') /\ v' w'.
  Proof.
    intros H H1.
    destruct gen_compiler_sound with (1 := conj H H1) as (w1 & H2 & H3).
    exists w1.
    simpl; rewrite <- gen_linker_out with i'.
    + rewrite <- (linker_code_start ilen (iP,cP) iQ err) at 2; auto.
    + apply H1.
  Qed.

  Corollary gen_compiler_terminates v w :
          v w -> (iQ,gen_compiler) /Y/ (iQ,w) -> (iP,cP) /X/ (iP,v) .
  Proof.
    intros H (w' & H').
    apply gen_compiler_complete with (1 := H).
    unfold gen_linker; rewrite linker_code_start; auto; firstorder.
  Qed.

  Theorem gen_compiler_correction :
           { lnk : nat -> nat
           & { Q | fst Q = iQ
                /\ lnk iP = iQ
                /\ (forall i, out_code i P -> lnk i = code_end Q)
                /\ (forall i1 v1 w1 i2 v2, v1 w1 /\ P /X/ (i1,v1) ~~> (i2,v2) -> exists w2, v2 w2 /\ Q /Y/ (lnk i1,w1) ~~> (lnk i2,w2))
                /\ (forall i1 v1 w1 j2 w2, v1 w1 /\ Q /Y/ (lnk i1,w1) ~~> (j2,w2) -> exists i2 v2, v2 w2 /\ P /X/ (i1,v1) ~~> (i2,v2) /\ j2 = lnk i2)
           } }.
  Proof.
    exists lnk, (iQ,cQ); split; auto; split; [ | split ].
    + rewrite <- (linker_code_start ilen (iP,cP) iQ err); auto.
    + rewrite P_eq; apply gen_linker_out.
    + rewrite P_eq.
      split.
      * intros i1 v1 w1 i2 v2 H.
        destruct gen_compiler_sound with (1 := H) as (w2 & H3 & H4).
        exists w2; split; auto.
      * intros i1 v1 w1 j2 w2 (H1 & H2).
        destruct gen_compiler_complete with (1 := H1) (i1 := i1)
          as ((i3,v3) & H3).
        - exists (j2,w2); auto.
        - destruct gen_compiler_sound with (1 := conj H1 H3) as (w3 & H4 & H5).
          generalize (sss_output_fun step_Y_fun H2 H5); inversion 1.
          exists i3, v3; auto.
  Qed.

End comp.