Require Import List Arith Max Lia Wellfounded Bool Eqdep_dec.
From Undecidability.Shared.Libs.DLW.Utils
Require Import list_focus utils_tac utils_list.
Set Implicit Arguments.
Section le_lt_pirr.
Scheme le_indd := Induction for le Sort Prop.
Theorem le_pirr x y (H1 H2 : x <= y) : H1 = H2.
Proof.
revert H2.
induction H1 as [ | m H1 IH ] using le_indd; intro H2.
change (le_n x) with (eq_rect _ (fun n' => x <= n') (le_n x) _ eq_refl).
generalize (eq_refl x).
pattern x at 2 4 6 10, H2.
case H2; [intro E | intros m l E].
rewrite UIP_dec with (p1 := E) (p2 := eq_refl); auto.
apply eq_nat_dec.
contradiction (le_Sn_n m); subst; auto.
change (le_S x m H1) with (eq_rect _ (fun n' => x <= n') (le_S x m H1) _ eq_refl).
generalize (eq_refl (S m)).
pattern (S m) at 1 3 4 6, H2.
case H2; [intro E | intros p H3 E].
contradiction (le_Sn_n m); subst; auto.
injection E; intro; subst.
rewrite (IH H3).
rewrite UIP_dec with (p1 := E) (p2 := eq_refl); auto.
apply eq_nat_dec.
Qed.
Fact lt_pirr x y (H1 H2 : x < y) : H1 = H2.
Proof. simpl; intros; apply le_pirr. Qed.
End le_lt_pirr.
Section fin_reif.
Variable (X : Type) (R : nat -> X -> Prop).
Fact fin_reif n : (forall i, i < n -> exists x, R i x)
-> exists s, forall i (Hi : i < n), R i (s i Hi).
Proof.
revert R; induction n as [ | n IHn ]; intros R HR.
+ assert (s : forall x, x < 0 -> X) by (intros; lia).
exists s; intros; lia.
+ destruct (HR 0) as (x & Hx); try lia.
destruct IHn with (R := fun i x => R (S i) x) as (s & Hs).
{ intros; apply HR; lia. }
exists (fun i => match i with 0 => fun _ => x | S i => fun Hi => s i (lt_S_n i n Hi) end).
intros [ | i ] Hi; simpl; auto.
Qed.
End fin_reif.
Fact fin_reif_nat (R : nat -> nat -> Prop) n :
(forall i, i < n -> ex (R i)) -> exists s, forall i, i < n -> R i (s i).
Proof.
intros HR.
apply fin_reif in HR.
destruct HR as (s & Hs).
exists (fun i => match le_lt_dec n i with left _ => 0 | right H => s _ H end).
intros i Hi; destruct (le_lt_dec n i); auto; lia.
Qed.
Section bounded_search.
Theorem bounded_search m (P : nat -> Type) :
(forall n, n < m -> P n + (P n -> False))
-> { n : nat & (n < m) * P n }%type + { forall n, n < m -> P n -> False }.
Proof.
revert P; induction m as [ | m IHm ]; intros P HP.
+ right; intros; lia.
+ destruct (HP 0) as [ H0 | H0 ]; try lia.
* left; exists 0; split; auto; lia.
* destruct IHm with (P := fun n => P (S n)) as [ (n & H1 & H2) | H1 ].
- intros; apply HP; lia.
- left; exists (S n); split; auto; lia.
- right; intros [ | n ] Hn; auto.
apply H1; lia.
Qed.
Lemma bounded_min (P : nat -> Prop) :
(forall x, P x \/ ~ P x)
-> forall n, (exists k, k < n /\ P k /\ forall i, i < k -> ~ P i) \/ forall k, k < n -> ~ P k.
Proof.
intros HP.
induction n as [ | n IHn ].
+ right; intros; lia.
+ destruct IHn as [ (k & H1 & H2 & H3) | H ].
* left; exists k; repeat split; auto; lia.
* destruct (HP n).
- left; exists n; repeat split; auto.
- right; intros k Hk.
destruct (eq_nat_dec k n); subst; auto.
apply H; lia.
Qed.
Lemma minimize (P : nat -> Prop) : (forall x, P x \/ ~ P x) -> (exists n, P n) -> exists n, P n /\ forall i, i < n -> ~ P i.
Proof.
intros HP (n & Hn).
destruct (@bounded_min _ HP (S n)) as [ (k & H1 & H2 & H3) | H ].
+ exists k; split; auto.
+ exfalso; apply H with n; auto.
Qed.
Lemma first_non_zero (f : nat -> nat) n : f 0 = 0 -> f n <> 0 -> exists i, i < n /\ (forall k, k <= i -> f k = 0) /\ f (i+1) <> 0.
Proof.
intros H0 H1.
destruct (@minimize (fun i => f i <> 0)) as (i & H2 & H3).
+ intro; destruct (eq_nat_dec (f x) 0); lia.
+ exists n; auto.
+ assert (i <> 0) as Hi by (intro; subst; destruct H2; auto).
exists (i-1); split; [ | split ].
* destruct (le_lt_dec i n) as [ | H4 ]; try lia.
apply H3 in H4; destruct H4; auto.
* intros k Hk; generalize (H3 k); intros; lia.
* replace (i-1+1) with i by lia; auto.
Qed.
End bounded_search.
Fact interval_dec a b i : { a <= i < b } + { i < a \/ b <= i }.
Proof.
destruct (le_lt_dec b i).
+ right; lia.
+ destruct (le_lt_dec a i).
* left; lia.
* right; lia.
Qed.
Definition lsum := fold_right plus 0.
Definition lmax := fold_right max 0.
Fact lmax_spec l x : lmax l <= x <-> Forall (fun y => y <= x) l.
Proof.
revert x; induction l as [ | y l IHl ]; simpl.
+ split; auto; try lia.
+ intros x; rewrite Forall_cons_inv, <- IHl, Nat.max_lub_iff; tauto.
Qed.
Fact lsum_app l r : lsum (l++r) = lsum l+lsum r.
Proof.
induction l as [ | x l IHl ]; simpl; auto; rewrite IHl; lia.
Qed.
Fact lsum_le x l : In x l -> x <= lsum l.
Proof.
intros H; apply in_split in H.
destruct H as (u & v & ->).
rewrite lsum_app; simpl; lia.
Qed.
Fact lmax_prop l x : In x l -> x <= lmax l.
Proof.
specialize (proj1 (lmax_spec l _) (le_refl _)).
rewrite Forall_forall; auto.
Qed.
Section new.
Definition nat_new l := S (lmax l).
Fact nat_new_spec l : ~ In (nat_new l) l.
Proof.
assert (forall x, In x l -> x < nat_new l) as H.
induction l as [ | x l IHl ].
intros _ [].
intros y [ [] | Hy ]; apply le_n_S;
[ apply le_max_l | ].
apply IHl, le_S_n in Hy.
apply le_trans with (1 := Hy), le_max_r.
intros C; apply H in C; lia.
Qed.
End new.
Local Notation Zero := false.
Local Notation One := true.
Fixpoint div2 n : nat * bool :=
match n with
| 0 => (0,Zero)
| 1 => (0,One)
| S (S n) => let (p,b) := div2 n in (S p,b)
end.
Fact div2_spec n : match div2 n with
| (p,One) => n = 2*p+1
| (p,Zero) => n = 2*p
end.
Proof.
induction n as [ [ | [ | n ] ] IHn ] using (well_founded_induction lt_wf); simpl; auto.
specialize (IHn n).
destruct (div2 n) as (p,[]); simpl in * |- *; lia.
Qed.
Fixpoint div2_2p1 p : div2 (2*p+1) = (p,One).
Proof.
destruct p as [ | p ].
simpl; auto.
replace (2*S p+1) with (S (S (2*p+1))) by lia.
unfold div2; fold div2; rewrite div2_2p1; auto.
Qed.
Fixpoint div2_2p0 p : div2 (2*p) = (p,Zero).
Proof.
destruct p as [ | p ].
simpl; auto.
replace (2*S p) with (S (S (2*p))) by lia.
unfold div2; fold div2; rewrite div2_2p0; auto.
Qed.
Fixpoint pow2 p :=
match p with
| 0 => 1
| S p => 2*pow2 p
end.
Fact pow2_fix0 : pow2 0 = 1.
Proof. reflexivity. Qed.
Fact pow2_fix1 p : pow2 (S p) = 2*pow2 p.
Proof. reflexivity. Qed.
Fact pow2_ge1 p : 1 <= pow2 p.
Proof. induction p; simpl; lia. Qed.
Fact pow2_2n1_dec n : { p : nat & { b | S n = pow2 p*(2*b+1) } }.
Proof.
induction on n as IH with measure n.
generalize (div2_spec (S n)).
destruct (div2 (S n)) as (d,[]); intros Hn.
+ exists 0, d; simpl; lia.
+ destruct d as [ | d ].
* simpl in Hn; lia.
* destruct (IH d) as (p & b & H).
- lia.
- exists (S p), b; rewrite pow2_fix1, <- mult_assoc, <- H; auto.
Qed.
Fact pow2_dec_uniq p a q b : pow2 p*(2*a+1) = pow2 q*(2*b+1) -> p = q /\ a = b.
Proof.
revert q; induction p as [ | p IHp ]; intros [ | q ].
+ simpl; lia.
+ rewrite pow2_fix0, pow2_fix1, <- mult_assoc; lia.
+ rewrite pow2_fix0, pow2_fix1, <- mult_assoc; lia.
+ rewrite !pow2_fix1, <- !mult_assoc; intros H.
destruct (IHp q); lia.
Qed.
Fact pow2_dec_ge1 p b : 1 <= pow2 p*(2*b+1).
Proof.
change 1 with (1*1) at 1; apply mult_le_compat;
try lia; apply pow2_ge1.
Qed.
Section pow2_bound.
Let loop := fix loop x n :=
match n with
| 0 => 0
| S n => match div2 x with
| (0,_) => 0
| (p,_) => S (loop p n)
end
end.
Let loop_prop n : forall x, x < n -> x < pow2 (S (loop x n)).
Proof.
induction n as [ | n IHn ]; intros x Hx.
{ lia. }
unfold loop; fold loop.
generalize (div2_spec x).
destruct (div2 x) as ([ | p ],[]); intros H.
+ simpl; lia.
+ simpl; lia.
+ specialize (IHn (S p)); spec in IHn.
* lia.
* simpl in IHn |- *; lia.
+ specialize (IHn (S p)); spec in IHn.
* lia.
* simpl in IHn |- *; lia.
Qed.
Definition find_pow2 x := S (loop (pred x) x).
Fact find_pow2_geq x : 1 <= find_pow2 x.
Proof. unfold find_pow2; lia. Qed.
Fact find_pow2_prop x : x <= pow2 (find_pow2 x).
Proof.
unfold find_pow2; destruct x.
+ simpl; lia.
+ apply loop_prop; auto.
Qed.
End pow2_bound.
Section nat_sorted.
Definition nat_sorted ll := forall l a m b r, ll = l ++ a :: m ++ b :: r -> a < b.
Fact in_nat_sorted_0 : nat_sorted nil.
Proof. intros [] ? ? ? ? ?; discriminate. Qed.
Fact in_nat_sorted_1 x : nat_sorted (x::nil).
Proof. intros [ | ? [] ] ? [] ? ? ?; discriminate. Qed.
Fact in_nat_sorted_2 x y ll : x < y -> nat_sorted (y::ll) -> nat_sorted (x::y::ll).
Proof.
intros H1 H2 l a m b r H3.
destruct l as [ | u l ].
inversion H3; subst.
destruct m as [ | v m ].
inversion H4; subst; auto.
inversion H4; subst.
apply lt_trans with (1 := H1), (H2 nil _ m _ r); auto.
inversion H3; subst.
apply (H2 l _ m _ r); auto.
Qed.
Fact in_nat_sorted_3 x ll : Forall (lt x) ll -> nat_sorted ll -> nat_sorted (x::ll).
Proof.
induction 1 as [ | y ll Hll IHl ].
intro; apply in_nat_sorted_1.
intros H.
apply in_nat_sorted_2; auto.
Qed.
Fact nat_sorted_cons_inv x ll : nat_sorted (x::ll) -> nat_sorted ll.
Proof. intros H l a m b r ?; apply (H (x::l) _ m _ r); subst; solve list eq. Qed.
Fact nat_sorted_Forall x ll : nat_sorted (x::ll) -> Forall (lt x) ll.
Proof.
rewrite Forall_forall; intros H y Hy.
apply in_split in Hy.
destruct Hy as (l & r & ?); subst.
apply (H nil _ l _ r); auto.
Qed.
Fact nat_sorted_head_inv x y ll : nat_sorted (x::y::ll) -> x < y.
Proof. intros H; apply (H nil _ nil _ ll); solve list eq. Qed.
Variable P : list nat -> Type.
Hypothesis (HP0 : P nil).
Hypothesis (HP1 : forall x, P (x::nil)).
Hypothesis (HP2 : forall x y l, x < y -> P (y::l) -> P (x::y::l)).
Theorem nat_sorted_rect l : nat_sorted l -> P l.
Proof.
induction l as [ [ | x [ | y l ] ] IHl ] using (measure_rect (@length _)).
intro; apply HP0.
intro; apply HP1.
intros H; apply HP2.
revert H; apply nat_sorted_head_inv.
apply IHl.
rew length; lia.
revert H; apply nat_sorted_cons_inv.
Qed.
End nat_sorted.
Fact nat_sorted_injective ll : nat_sorted ll -> list_injective ll.
Proof.
intros H l a m b r E; generalize (H _ _ _ _ _ E); lia.
Qed.
Fixpoint nat_list_insert x l :=
match l with
| nil => x::nil
| y::l => if x <? y then x::y::l else
if y <? x then y::nat_list_insert x l else y::l
end.
Fact nat_list_insert_length x l : length (nat_list_insert x l) <= S (length l).
Proof.
induction l as [ | y l IHl ]; simpl.
lia.
destruct (x <? y); simpl; try lia.
destruct (y <? x); simpl; lia.
Qed.
Fact nat_list_insert_incl x l : incl (nat_list_insert x l) (x::l)
/\ incl (x::l) (nat_list_insert x l).
Proof.
split.
induction l as [ | y l IHl ]; simpl.
intro; auto.
destruct (x <? y); destruct (y <? x).
intro; auto.
intro; auto.
intros ? [ [] | H ]; simpl; auto.
apply IHl in H; simpl in H; tauto.
intro; simpl; tauto.
induction l as [ | y l IHl ]; simpl.
intro; auto.
generalize (Nat.ltb_lt x y) (Nat.ltb_lt y x).
destruct (x <? y); destruct (y <? x); intros H1 H2 z; auto.
intros [ Hz | [ Hz | Hz ] ]; subst.
right; apply IHl; left; auto.
left; auto.
right; apply IHl; right; auto.
destruct (lt_eq_lt_dec x y) as [ [ H | ] | H ].
apply H1 in H; discriminate.
2: apply H2 in H; discriminate.
intros [ Hz | [ Hz | Hz ] ]; subst; auto.
left; auto.
left; auto.
right; auto.
Qed.
Fact nat_list_insert_Forall (P : nat -> Prop) x l :
P x -> Forall P l -> Forall P (nat_list_insert x l).
Proof.
do 2 rewrite Forall_forall; intros H1 H2 y Hy.
apply nat_list_insert_incl in Hy.
destruct Hy; subst; auto.
Qed.
Fact nat_list_insert_sorted x l : nat_sorted l -> nat_sorted (nat_list_insert x l).
Proof.
induction l as [ | y l IHl ]; simpl.
intro; apply in_nat_sorted_1.
intros H.
generalize (Nat.ltb_lt x y) (Nat.ltb_lt y x).
destruct (x <? y); destruct (y <? x); intros H1 H2.
apply proj1 in H1; spec in H1; auto.
apply proj1 in H2; spec in H2; auto.
lia.
apply in_nat_sorted_2; auto; tauto.
apply in_nat_sorted_3.
apply nat_list_insert_Forall.
tauto.
apply nat_sorted_Forall; auto.
apply IHl; revert H; apply nat_sorted_cons_inv.
auto.
Qed.
Definition nat_sort := fold_right (nat_list_insert) nil.
Fact nat_sort_length l : length (nat_sort l) <= length l.
Proof.
induction l as [ | x l IHl ]; simpl.
lia.
apply le_trans with (1 := nat_list_insert_length _ _); lia.
Qed.
Fact nat_sort_eq l : incl (nat_sort l) l /\ incl l (nat_sort l).
Proof.
induction l as [ | x l IHl ]; simpl; split; intros y Hy; auto.
apply nat_list_insert_incl in Hy; simpl.
destruct Hy as [ | Hy ]; auto; right; apply IHl; auto.
apply nat_list_insert_incl.
destruct Hy; [ left | right ]; auto.
apply IHl; auto.
Qed.
Fact nat_sort_sorted l : nat_sorted (nat_sort l).
Proof.
induction l as [ | x l IHl ].
apply in_nat_sorted_0.
simpl; apply nat_list_insert_sorted; auto.
Qed.
Fact nat_sinc (f : nat -> nat) a b :
(forall x, a <= x < b -> f x < f (S x))
-> (forall x y, a <= x < y /\ y <= b -> f x < f y).
Proof.
intros H1.
assert (forall n m, n <= m <= b - a -> f (a+n) <= f (a+m)) as H2.
intros n m (H2 & H3); revert H2 H3.
induction 1 as [ | m Hm IH ]; auto.
intros H. spec in IH. lia.
apply le_trans with (1 := IH).
replace (a+S m) with (S (a+m)) by lia.
apply lt_le_weak, H1; lia.
assert (forall n m, n < m <= b - a -> f (a+n) < f (a+m)) as H3.
unfold lt at 1; intros n m H.
specialize (H1 (a+n)).
spec in H1.
lia.
apply lt_le_trans with (1 := H1).
replace (S (a+n)) with (a+S n) by lia.
apply H2; auto.
intros x y H4.
replace x with (a+(x-a)) by lia.
replace y with (a+(y-a)) by lia.
apply H3.
lia.
Qed.
Fact nat_sinc_inj f a b :
(forall x y, a <= x < y /\ y <= b -> f x < f y)
-> (forall x y, a <= x <= b -> a <= y <= b -> f x = f y -> x = y).
Proof.
intros H0 x y Hx Hy.
destruct Hx; destruct Hy.
destruct (lt_eq_lt_dec x y) as [ [ ? | ? ] | ? ]; auto.
specialize (H0 x y).
spec in H0; repeat split; auto; intro; lia.
specialize (H0 y x).
spec in H0; repeat split; auto; intro; lia.
Qed.
Theorem nat_rev_ind (P : nat -> Prop) (HP : forall n, P (S n) -> P n) x y : x <= y -> P y -> P x.
Proof. induction 1; auto. Qed.
Section nat_rev_bounded_ind.
Variables (k : nat) (P : nat -> Prop) (HP : forall n, S n <= k -> P (S n) -> P n).
Fact nat_rev_bounded_ind x y : x <= y <= k -> P y -> P x.
Proof.
intros H1 H2.
refine (proj1 (@nat_rev_ind (fun n => P n /\ n <= k) _ x y _ _)).
clear x y H1 H2; intros n (H1 & H2); split; auto; lia.
lia.
split; auto; lia.
Qed.
End nat_rev_bounded_ind.
Section nat_minimize.
Variable P : nat -> Prop.
Hypothesis HP : forall n, { P n } + { ~ P n }.
Inductive bar_min (n : nat) : Prop :=
| in_bar_min_0 : P n -> bar_min n
| in_bar_min_1 : bar_min (S n) -> bar_min n.
Section nat_min.
Let min_rec : forall n, bar_min n -> { m | P m /\ forall x, P x -> x < n \/ m <= x }.
Proof.
refine (fix loop n Hn := match HP n with
| left H => exist _ n _
| right H => match loop (S n) _ with
| exist _ m Hm => exist _ m _
end
end).
* split; auto; intros; lia.
* destruct Hn; auto; destruct H; auto.
* destruct Hm as [ H1 H2 ]; split; auto.
intros x Hx; specialize (H2 x Hx).
destruct (eq_nat_dec x n).
- subst; tauto.
- lia.
Qed.
Definition min_dec : (exists n, P n) -> { m | P m /\ forall x, P x -> m <= x }.
Proof.
intros H.
destruct (@min_rec 0) as (m & H1 & H2).
* destruct H as (n & Hn).
apply in_bar_min_0 in Hn.
revert Hn; apply nat_rev_ind.
apply in_bar_min_1.
lia.
* exists m; split; auto.
intros x Hx; specialize (H2 _ Hx); lia.
Defined.
End nat_min.
Fact first_which : (exists x, P x) -> { m | P m /\ forall x, x < m -> ~ P x }.
Proof.
intros H.
destruct (min_dec H) as (m & H1 & H2).
exists m; split; auto.
intros x Hx H3.
apply H2 in H3.
lia.
Qed.
End nat_minimize.
Section first_which_ni.
Variable P : nat -> Prop.
Fact bounded_search_ni n : (forall i, i < n -> P i \/ ~ P i) -> (forall i, i < n -> ~ P i) \/ exists i, i < n /\ P i /\ forall j, j < i -> ~ P j.
Proof.
revert P; induction n as [ | n IHn ]; intros P HP.
+ left; intros; lia.
+ destruct (HP 0) as [ H | H ]; try lia.
- right; exists 0; split; try lia; split; auto; intros; lia.
- destruct IHn with (P := fun n => P (S n)) as [ H1 | (x & H1 & H2 & H3) ].
* intros; apply HP; lia.
* left; intros [] ?; auto; apply H1; lia.
* right; exists (S x); split; try lia; split; auto.
intros [] ?; auto; apply H3; lia.
Qed.
Hypothesis HP : forall n, P n \/ ~ P n.
Fact first_which_ni : (exists x, P x) -> exists m, P m /\ forall x, x < m -> ~ P x.
Proof.
intros (n & Hn).
destruct (@bounded_search_ni (S n)) as [ H1 | (m & H1 & H2 & H3) ].
+ intros; auto.
+ contradict Hn; apply H1; lia.
+ exists m; auto.
Qed.
End first_which_ni.