From Undecidability.Shared.Libs.PSL Require Export Prelim EqDec.
Export List.ListNotations.
Notation "x 'el' A" := (In x A) (at level 70).
Notation "A <<= B" := (incl A B) (at level 70).
Notation "| A |" := (length A) (at level 65).
Definition equi X (A B : list X) : Prop := incl A B /\ incl B A.
Notation "A === B" := (equi A B) (at level 70).
Hint Unfold equi : core.
Hint Extern 4 =>
match goal with
|[ H: ?x el nil |- _ ] => destruct H
end : core.
Hint Rewrite <- app_assoc : list.
Hint Rewrite rev_app_distr map_app prod_length : list.
Lemma list_cycle (X : Type) (A : list X) x :
x::A <> A.
Proof.
intros B.
assert (C: |x::A| <> |A|) by (cbn; lia).
apply C. now rewrite B.
Qed.
Instance list_in_dec X (x : X) (A : list X) :
eq_dec X -> dec (x el A).
Proof.
intros D. apply in_dec. exact D.
Qed.
Lemma cfind X A (p: X -> Prop) (p_dec: forall x, dec (p x)) :
{x | x el A /\ p x} + {forall x, x el A -> ~ p x}.
Proof.
destruct (find (fun x => Dec (p x)) A) eqn:E.
- apply find_some in E. firstorder.
- right. intros. eapply find_none in E; eauto.
Qed.
Arguments cfind {X} A p {p_dec}.
Instance list_forall_dec X A (p : X -> Prop) :
(forall x, dec (p x)) -> dec (forall x, x el A -> p x).
Proof.
intros p_dec.
destruct (find (fun x => Dec (~ p x)) A) eqn:Eq.
- apply find_some in Eq as [H1 H0 %Dec_true]; right; auto.
- left. intros x E. apply find_none with (x := x) in Eq. apply dec_DN; auto. auto.
Qed.
Instance list_exists_dec X A (p : X -> Prop) :
(forall x, dec (p x)) -> dec (exists x, x el A /\ p x).
Proof.
intros p_dec.
destruct (find (fun x => Dec (p x)) A) eqn:Eq. - apply find_some in Eq as [H0 H1 %Dec_true]. firstorder. - right. intros [x [E F]]. apply find_none with (x := x) in Eq; auto. eauto. Qed.
Lemma list_exists_DM X A (p : X -> Prop) :
(forall x, dec (p x)) ->
~ (forall x, x el A -> ~ p x) -> exists x, x el A /\ p x.
Proof.
intros D E.
destruct (find (fun x => Dec (p x)) A) eqn:Eq.
+ apply find_some in Eq as [? ?%Dec_true]. eauto.
+ exfalso. apply E. intros. apply find_none with (x := x) in Eq; eauto.
Qed.
Lemma list_exists_not_incl (X: eqType) (A B : list X) :
~ A <<= B -> exists x, x el A /\ ~ x el B.
Proof.
intros E.
apply list_exists_DM; auto.
intros F. apply E. intros x G.
apply dec_DN; auto.
Qed.
Lemma list_cc X (p : X -> Prop) A :
(forall x, dec (p x)) ->
(exists x, x el A /\ p x) -> {x | x el A /\ p x}.
Proof.
intros D E.
destruct (cfind A p) as [[x [F G]]|F].
- eauto.
- exfalso. destruct E as [x [G H]]. apply (F x); auto.
Qed.
Hint Resolve in_eq in_nil in_cons in_or_app : core.
Section Membership.
Variable X : Type.
Implicit Types (x y: X) (A B: list X).
Lemma in_sing x y :
x el [y] -> x = y.
Proof.
cbn. intros [[]|[]]. reflexivity.
Qed.
Lemma in_cons_neq x y A :
x el y::A -> x <> y -> x el A.
Proof.
cbn. intros [[]|D] E; congruence.
Qed.
Lemma not_in_cons x y A :
~ x el y :: A -> x <> y /\ ~ x el A.
Proof.
intuition; subst; auto.
Qed.
Definition disjoint A B :=
~ exists x, x el A /\ x el B.
Lemma disjoint_forall A B :
disjoint A B <-> forall x, x el A -> ~ x el B.
Proof.
split.
- intros D x E F. apply D. exists x. auto.
- intros D [x [E F]]. exact (D x E F).
Qed.
Lemma disjoint_symm A B :
disjoint A B -> disjoint B A.
Proof.
firstorder.
Qed.
Lemma disjoint_incl A B B' :
B' <<= B -> disjoint A B -> disjoint A B'.
Proof.
firstorder.
Qed.
Lemma disjoint_nil B :
disjoint nil B.
Proof.
firstorder.
Qed.
Lemma disjoint_nil' A :
disjoint A nil.
Proof.
firstorder.
Qed.
Lemma disjoint_cons x A B :
disjoint (x::A) B <-> ~ x el B /\ disjoint A B.
Proof.
split.
- intros D. split.
+ intros E. apply D. eauto.
+ intros [y [E F]]. apply D. eauto.
- intros [D E] [y [[F|F] G]].
+ congruence.
+ apply E. eauto.
Qed.
Lemma disjoint_app A B C :
disjoint (A ++ B) C <-> disjoint A C /\ disjoint B C.
Proof.
split.
- intros D. split.
+ intros [x [E F]]. eauto 6.
+ intros [x [E F]]. eauto 6.
- intros [D E] [x [F G]].
apply in_app_iff in F as [F|F]; eauto.
Qed.
End Membership.
Hint Resolve disjoint_nil disjoint_nil' : core.
Hint Resolve incl_refl incl_tl incl_cons incl_appl incl_appr incl_app : core.
Lemma incl_nil X (A : list X) :
nil <<= A.
Proof. intros x []. Qed.
Hint Resolve incl_nil : core.
Lemma incl_map X Y A B (f : X -> Y) :
A <<= B -> map f A <<= map f B.
Proof.
intros D y E. apply in_map_iff in E as [x [E E']].
subst y. apply in_map_iff. eauto.
Qed.
Section Inclusion.
Variable X : Type.
Implicit Types A B : list X.
Lemma incl_nil_eq A :
A <<= nil -> A=nil.
Proof.
intros D. destruct A as [|x A].
- reflexivity.
- exfalso. apply (D x). auto.
Qed.
Lemma incl_shift x A B :
A <<= B -> x::A <<= x::B.
Proof. auto. Qed.
Lemma incl_lcons x A B :
x::A <<= B <-> x el B /\ A <<= B.
Proof.
split.
- intros D. split; hnf; auto.
- intros [D E] z [F|F]; subst; auto.
Qed.
Lemma incl_sing x A y :
x::A <<= [y] -> x = y /\ A <<= [y].
Proof.
rewrite incl_lcons. intros [D E].
apply in_sing in D. auto.
Qed.
Lemma incl_rcons x A B :
A <<= x::B -> ~ x el A -> A <<= B.
Proof. intros C D y E. destruct (C y E) as [F|F]; congruence. Qed.
Lemma incl_lrcons x A B :
x::A <<= x::B -> ~ x el A -> A <<= B.
Proof.
intros C D y E.
assert (F: y el x::B) by auto.
destruct F as [F|F]; congruence.
Qed.
Lemma incl_app_left A B C :
A ++ B <<= C -> A <<= C /\ B <<= C.
Proof.
firstorder.
Qed.
End Inclusion.
Definition inclp (X : Type) (A : list X) (p : X -> Prop) : Prop :=
forall x, x el A -> p x.
Instance incl_preorder X :
PreOrder (@incl X).
Proof.
constructor; hnf; unfold incl; auto.
Qed.
Instance equi_Equivalence X :
Equivalence (@equi X).
Proof.
constructor; hnf; firstorder.
Qed.
Instance incl_equi_proper X :
Proper (@equi X ==> @equi X ==> iff) (@incl X).
Proof.
hnf. intros A B D. hnf. firstorder.
Qed.
Instance cons_incl_proper X x :
Proper (@incl X ==> @incl X) (@cons X x).
Proof.
hnf. apply incl_shift.
Qed.
Instance cons_equi_proper X x :
Proper (@equi X ==> @equi X) (@cons X x).
Proof.
hnf. firstorder.
Qed.
Instance in_incl_proper X x :
Proper (@incl X ==> Basics.impl) (@In X x).
Proof.
intros A B D. hnf. auto.
Qed.
Instance in_equi_proper X x :
Proper (@equi X ==> iff) (@In X x).
Proof.
intros A B D. firstorder.
Qed.
Instance app_incl_proper X :
Proper (@incl X ==> @incl X ==> @incl X) (@app X).
Proof.
intros A B D A' B' E. auto.
Qed.
Instance app_equi_proper X :
Proper (@equi X ==> @equi X ==> @equi X) (@app X).
Proof.
hnf. intros A B D. hnf. intros A' B' E.
destruct D, E; auto.
Qed.
Section Equi.
Variable X : Type.
Implicit Types A B : list X.
Lemma equi_push x A :
x el A -> A === x::A.
Proof.
auto.
Qed.
Lemma equi_dup x A :
x::A === x::x::A.
Proof.
auto.
Qed.
Lemma equi_swap x y A:
x::y::A === y::x::A.
Proof.
split; intros z; cbn; tauto.
Qed.
Lemma equi_shift x A B :
x::A++B === A++x::B.
Proof.
split; intros y.
- intros [D|D].
+ subst; auto.
+ apply in_app_iff in D as [D|D]; auto.
- intros D. apply in_app_iff in D as [D|D].
+ auto.
+ destruct D; subst; auto.
Qed.
Lemma equi_rotate x A :
x::A === A++[x].
Proof.
split; intros y; cbn.
- intros [D|D]; subst; auto.
- intros D. apply in_app_iff in D as [D|D].
+ auto.
+ apply in_sing in D. auto.
Qed.
End Equi.
Lemma in_concat_iff A l (a:A) : a el concat l <-> exists l', a el l' /\ l' el l.
Proof.
induction l; cbn.
- intuition. now destruct H.
- rewrite in_app_iff, IHl. firstorder subst. auto.
Qed.
Lemma app_comm_cons' (A : Type) (x y : list A) (a : A) :
x ++ a :: y = (x ++ [a]) ++ y.
Proof. rewrite <- app_assoc. cbn. trivial. Qed.
Lemma skipn_nil (X : Type) (n : nat) : skipn n nil = @nil X.
Proof. destruct n; cbn; auto. Qed.
Lemma skipn_app (X : Type) (xs ys : list X) (n : nat) :
n = (| xs |) ->
skipn n (xs ++ ys) = ys.
Proof.
intros ->. revert ys. induction xs; cbn; auto.
Qed.
Lemma skipn_length (X : Type) (n : nat) (xs : list X) :
length (skipn n xs) = length xs - n.
Proof.
revert xs. induction n; intros; cbn.
- lia.
- destruct xs; cbn; auto.
Qed.
Lemma map_repeat (X Y : Type) (f : X -> Y) (n : nat) (a : X) :
map f (repeat a n) = repeat (f a) n.
Proof. induction n; cbn in *; f_equal; auto. Qed.
Lemma repeat_add_app (X : Type) (m n : nat) (a : X) :
repeat a (m + n) = repeat a m ++ repeat a n.
Proof. induction m; cbn; f_equal; auto. Qed.
Lemma repeat_S_cons (X : Type) (n : nat) (a : X) :
a :: repeat a n = repeat a n ++ [a].
Proof.
replace (a :: repeat a n) with (repeat a (S n)) by trivial. replace (S n) with (n+1) by lia.
rewrite repeat_add_app. cbn. trivial.
Qed.
Lemma repeat_app_eq (X : Type) (m n : nat) (a : X) :
repeat a n ++ repeat a m = repeat a m ++ repeat a n.
Proof. rewrite <- !repeat_add_app. f_equal. lia. Qed.
Lemma repeat_eq_iff (X : Type) (n : nat) (a : X) x :
x = repeat a n <-> length x = n /\ forall y, y el x -> y = a.
Proof.
split.
{
intros ->. split. apply repeat_length. apply repeat_spec.
}
{
revert x. induction n; intros x (H1&H2); cbn in *.
- destruct x; cbn in *; congruence.
- destruct x; cbn in *; inv H1. f_equal.
+ apply H2. auto.
+ apply IHn. auto.
}
Qed.
Lemma rev_repeat (X : Type) (n : nat) (a : X) :
rev (repeat a n) = repeat a n.
Proof.
apply repeat_eq_iff. split.
- rewrite rev_length. rewrite repeat_length. auto.
- intros y Hx % in_rev. eapply repeat_spec; eauto.
Qed.
Lemma concat_repeat_repeat (X : Type) (n m : nat) (a : X) :
concat (repeat (repeat a n) m) = repeat a (m*n).
Proof.
induction m as [ | m' IHm]; cbn.
- auto.
- rewrite repeat_add_app. f_equal. auto.
Qed.
Corollary skipn_repeat_add (X : Type) (n m : nat) (a : X) :
skipn n (repeat a (n + m)) = repeat a m.
Proof.
rewrite repeat_add_app. erewrite skipn_app; eauto. symmetry. apply repeat_length.
Qed.
Corollary skipn_repeat (X : Type) (n : nat) (a : X) :
skipn n (repeat a n) = nil.
Proof.
rewrite <- (app_nil_r (repeat a n)). erewrite skipn_app; eauto. symmetry. apply repeat_length.
Qed.
Lemma rev_eq_nil (Z: Type) (l: list Z) :
rev l = nil -> l = nil.
Proof. intros. destruct l; cbn in *. reflexivity. symmetry in H. now apply app_cons_not_nil in H. Qed.
Lemma map_eq_nil (Y Z: Type) (f: Y->Z) (l: list Y) :
map f l = nil -> l = nil.
Proof. intros. destruct l; cbn in *. reflexivity. congruence. Qed.
Lemma map_eq_nil' (Y Z: Type) (f: Y->Z) (l: list Y) :
nil = map f l -> l = nil.
Proof. now intros H % eq_sym % map_eq_nil. Qed.
Lemma map_eq_cons (A B: Type) (f: A->B) (xs: list A) (y: B) (ys: list B) :
map f xs = y :: ys ->
exists x xs', xs = x :: xs' /\
y = f x /\
ys = map f xs'.
Proof. induction xs; intros H; cbn in *; inv H; eauto. Qed.
Lemma map_eq_cons' (A B: Type) (f: A -> B) (xs: list A) (y: B) (ys: list B) :
y :: ys = map f xs ->
exists x xs', xs = x :: xs' /\
y = f x /\
ys = map f xs'.
Proof. now intros H % eq_sym % map_eq_cons. Qed.
Lemma map_eq_app (A B: Type) (f: A -> B) (ls : list A) (xs ys : list B) :
map f ls = xs ++ ys ->
exists ls1 ls2, ls = ls1 ++ ls2 /\
xs = map f ls1 /\
ys = map f ls2.
Proof.
revert xs ys. induction ls; intros; cbn in *.
- symmetry in H. apply app_eq_nil in H as (->&->). exists nil, nil. cbn. tauto.
- destruct xs; cbn in *.
+ exists nil. eexists. repeat split. cbn. now subst.
+ inv H. specialize IHls with (1 := H2) as (ls1&ls2&->&->&->).
repeat econstructor. 2: instantiate (1 := a :: ls1). all: reflexivity.
Qed.
Lemma rev_eq_cons (A: Type) (ls: list A) (x : A) (xs: list A) :
rev ls = x :: xs ->
ls = rev xs ++ [x].
Proof. intros H. rewrite <- rev_involutive at 1. rewrite H. cbn. reflexivity. Qed.
Lemma map_injective (X Y: Type) (f: X -> Y) :
(forall x y, f x = f y -> x = y) ->
forall xs ys, map f xs = map f ys -> xs = ys.
Proof.
intros HInj. hnf. intros x1. induction x1 as [ | x x1' IH]; intros; cbn in *.
- now apply map_eq_nil' in H.
- now apply map_eq_cons' in H as (l1&l2&->&->%HInj&->%IH).
Qed.
Instance map_ext_proper A B: Proper (@ pointwise_relation A B (@eq B) ==> (@eq (list A)) ==> (@eq (list B))) (@map A B).
Proof.
intros f f' Hf a ? <-. induction a;cbn;congruence.
Qed.
Lemma tl_map (A B: Type) (f: A -> B) (xs : list A) :
tl (map f xs) = map f (tl xs).
Proof. now destruct xs; cbn. Qed.
Lemma tl_app (A: Type) (xs ys : list A) :
xs <> nil ->
tl (xs ++ ys) = tl xs ++ ys.
Proof. destruct xs; cbn; congruence. Qed.
Lemma tl_rev (A: Type) (xs : list A) :
tl (rev xs) = rev (removelast xs).
Proof.
induction xs; cbn; auto.
destruct xs; cbn in *; auto.
rewrite tl_app; cbn in *.
- now rewrite IHxs.
- intros (H1&H2) % app_eq_nil; inv H2.
Qed.
Lemma hd_map (A B: Type) (f: A -> B) (xs : list A) (a : A) :
hd (f a) (map f xs) = f (hd a xs).
Proof. destruct xs; cbn; auto. Qed.
Lemma hd_app (A: Type) (xs ys : list A) a :
xs <> nil ->
hd a (xs ++ ys) = hd a xs.
Proof. intros H. destruct xs; auto. now contradiction H. Qed.
Lemma hd_rev (A: Type) (xs : list A) (a : A) :
hd a (rev xs) = last xs a.
Proof.
induction xs; cbn; auto.
destruct xs; cbn; auto.
rewrite hd_app. now apply IHxs.
intros (H1&H2)%app_eq_nil; inv H2.
Qed.
Export List.ListNotations.
Notation "x 'el' A" := (In x A) (at level 70).
Notation "A <<= B" := (incl A B) (at level 70).
Notation "| A |" := (length A) (at level 65).
Definition equi X (A B : list X) : Prop := incl A B /\ incl B A.
Notation "A === B" := (equi A B) (at level 70).
Hint Unfold equi : core.
Hint Extern 4 =>
match goal with
|[ H: ?x el nil |- _ ] => destruct H
end : core.
Hint Rewrite <- app_assoc : list.
Hint Rewrite rev_app_distr map_app prod_length : list.
Lemma list_cycle (X : Type) (A : list X) x :
x::A <> A.
Proof.
intros B.
assert (C: |x::A| <> |A|) by (cbn; lia).
apply C. now rewrite B.
Qed.
Instance list_in_dec X (x : X) (A : list X) :
eq_dec X -> dec (x el A).
Proof.
intros D. apply in_dec. exact D.
Qed.
Lemma cfind X A (p: X -> Prop) (p_dec: forall x, dec (p x)) :
{x | x el A /\ p x} + {forall x, x el A -> ~ p x}.
Proof.
destruct (find (fun x => Dec (p x)) A) eqn:E.
- apply find_some in E. firstorder.
- right. intros. eapply find_none in E; eauto.
Qed.
Arguments cfind {X} A p {p_dec}.
Instance list_forall_dec X A (p : X -> Prop) :
(forall x, dec (p x)) -> dec (forall x, x el A -> p x).
Proof.
intros p_dec.
destruct (find (fun x => Dec (~ p x)) A) eqn:Eq.
- apply find_some in Eq as [H1 H0 %Dec_true]; right; auto.
- left. intros x E. apply find_none with (x := x) in Eq. apply dec_DN; auto. auto.
Qed.
Instance list_exists_dec X A (p : X -> Prop) :
(forall x, dec (p x)) -> dec (exists x, x el A /\ p x).
Proof.
intros p_dec.
destruct (find (fun x => Dec (p x)) A) eqn:Eq. - apply find_some in Eq as [H0 H1 %Dec_true]. firstorder. - right. intros [x [E F]]. apply find_none with (x := x) in Eq; auto. eauto. Qed.
Lemma list_exists_DM X A (p : X -> Prop) :
(forall x, dec (p x)) ->
~ (forall x, x el A -> ~ p x) -> exists x, x el A /\ p x.
Proof.
intros D E.
destruct (find (fun x => Dec (p x)) A) eqn:Eq.
+ apply find_some in Eq as [? ?%Dec_true]. eauto.
+ exfalso. apply E. intros. apply find_none with (x := x) in Eq; eauto.
Qed.
Lemma list_exists_not_incl (X: eqType) (A B : list X) :
~ A <<= B -> exists x, x el A /\ ~ x el B.
Proof.
intros E.
apply list_exists_DM; auto.
intros F. apply E. intros x G.
apply dec_DN; auto.
Qed.
Lemma list_cc X (p : X -> Prop) A :
(forall x, dec (p x)) ->
(exists x, x el A /\ p x) -> {x | x el A /\ p x}.
Proof.
intros D E.
destruct (cfind A p) as [[x [F G]]|F].
- eauto.
- exfalso. destruct E as [x [G H]]. apply (F x); auto.
Qed.
Hint Resolve in_eq in_nil in_cons in_or_app : core.
Section Membership.
Variable X : Type.
Implicit Types (x y: X) (A B: list X).
Lemma in_sing x y :
x el [y] -> x = y.
Proof.
cbn. intros [[]|[]]. reflexivity.
Qed.
Lemma in_cons_neq x y A :
x el y::A -> x <> y -> x el A.
Proof.
cbn. intros [[]|D] E; congruence.
Qed.
Lemma not_in_cons x y A :
~ x el y :: A -> x <> y /\ ~ x el A.
Proof.
intuition; subst; auto.
Qed.
Definition disjoint A B :=
~ exists x, x el A /\ x el B.
Lemma disjoint_forall A B :
disjoint A B <-> forall x, x el A -> ~ x el B.
Proof.
split.
- intros D x E F. apply D. exists x. auto.
- intros D [x [E F]]. exact (D x E F).
Qed.
Lemma disjoint_symm A B :
disjoint A B -> disjoint B A.
Proof.
firstorder.
Qed.
Lemma disjoint_incl A B B' :
B' <<= B -> disjoint A B -> disjoint A B'.
Proof.
firstorder.
Qed.
Lemma disjoint_nil B :
disjoint nil B.
Proof.
firstorder.
Qed.
Lemma disjoint_nil' A :
disjoint A nil.
Proof.
firstorder.
Qed.
Lemma disjoint_cons x A B :
disjoint (x::A) B <-> ~ x el B /\ disjoint A B.
Proof.
split.
- intros D. split.
+ intros E. apply D. eauto.
+ intros [y [E F]]. apply D. eauto.
- intros [D E] [y [[F|F] G]].
+ congruence.
+ apply E. eauto.
Qed.
Lemma disjoint_app A B C :
disjoint (A ++ B) C <-> disjoint A C /\ disjoint B C.
Proof.
split.
- intros D. split.
+ intros [x [E F]]. eauto 6.
+ intros [x [E F]]. eauto 6.
- intros [D E] [x [F G]].
apply in_app_iff in F as [F|F]; eauto.
Qed.
End Membership.
Hint Resolve disjoint_nil disjoint_nil' : core.
Hint Resolve incl_refl incl_tl incl_cons incl_appl incl_appr incl_app : core.
Lemma incl_nil X (A : list X) :
nil <<= A.
Proof. intros x []. Qed.
Hint Resolve incl_nil : core.
Lemma incl_map X Y A B (f : X -> Y) :
A <<= B -> map f A <<= map f B.
Proof.
intros D y E. apply in_map_iff in E as [x [E E']].
subst y. apply in_map_iff. eauto.
Qed.
Section Inclusion.
Variable X : Type.
Implicit Types A B : list X.
Lemma incl_nil_eq A :
A <<= nil -> A=nil.
Proof.
intros D. destruct A as [|x A].
- reflexivity.
- exfalso. apply (D x). auto.
Qed.
Lemma incl_shift x A B :
A <<= B -> x::A <<= x::B.
Proof. auto. Qed.
Lemma incl_lcons x A B :
x::A <<= B <-> x el B /\ A <<= B.
Proof.
split.
- intros D. split; hnf; auto.
- intros [D E] z [F|F]; subst; auto.
Qed.
Lemma incl_sing x A y :
x::A <<= [y] -> x = y /\ A <<= [y].
Proof.
rewrite incl_lcons. intros [D E].
apply in_sing in D. auto.
Qed.
Lemma incl_rcons x A B :
A <<= x::B -> ~ x el A -> A <<= B.
Proof. intros C D y E. destruct (C y E) as [F|F]; congruence. Qed.
Lemma incl_lrcons x A B :
x::A <<= x::B -> ~ x el A -> A <<= B.
Proof.
intros C D y E.
assert (F: y el x::B) by auto.
destruct F as [F|F]; congruence.
Qed.
Lemma incl_app_left A B C :
A ++ B <<= C -> A <<= C /\ B <<= C.
Proof.
firstorder.
Qed.
End Inclusion.
Definition inclp (X : Type) (A : list X) (p : X -> Prop) : Prop :=
forall x, x el A -> p x.
Instance incl_preorder X :
PreOrder (@incl X).
Proof.
constructor; hnf; unfold incl; auto.
Qed.
Instance equi_Equivalence X :
Equivalence (@equi X).
Proof.
constructor; hnf; firstorder.
Qed.
Instance incl_equi_proper X :
Proper (@equi X ==> @equi X ==> iff) (@incl X).
Proof.
hnf. intros A B D. hnf. firstorder.
Qed.
Instance cons_incl_proper X x :
Proper (@incl X ==> @incl X) (@cons X x).
Proof.
hnf. apply incl_shift.
Qed.
Instance cons_equi_proper X x :
Proper (@equi X ==> @equi X) (@cons X x).
Proof.
hnf. firstorder.
Qed.
Instance in_incl_proper X x :
Proper (@incl X ==> Basics.impl) (@In X x).
Proof.
intros A B D. hnf. auto.
Qed.
Instance in_equi_proper X x :
Proper (@equi X ==> iff) (@In X x).
Proof.
intros A B D. firstorder.
Qed.
Instance app_incl_proper X :
Proper (@incl X ==> @incl X ==> @incl X) (@app X).
Proof.
intros A B D A' B' E. auto.
Qed.
Instance app_equi_proper X :
Proper (@equi X ==> @equi X ==> @equi X) (@app X).
Proof.
hnf. intros A B D. hnf. intros A' B' E.
destruct D, E; auto.
Qed.
Section Equi.
Variable X : Type.
Implicit Types A B : list X.
Lemma equi_push x A :
x el A -> A === x::A.
Proof.
auto.
Qed.
Lemma equi_dup x A :
x::A === x::x::A.
Proof.
auto.
Qed.
Lemma equi_swap x y A:
x::y::A === y::x::A.
Proof.
split; intros z; cbn; tauto.
Qed.
Lemma equi_shift x A B :
x::A++B === A++x::B.
Proof.
split; intros y.
- intros [D|D].
+ subst; auto.
+ apply in_app_iff in D as [D|D]; auto.
- intros D. apply in_app_iff in D as [D|D].
+ auto.
+ destruct D; subst; auto.
Qed.
Lemma equi_rotate x A :
x::A === A++[x].
Proof.
split; intros y; cbn.
- intros [D|D]; subst; auto.
- intros D. apply in_app_iff in D as [D|D].
+ auto.
+ apply in_sing in D. auto.
Qed.
End Equi.
Lemma in_concat_iff A l (a:A) : a el concat l <-> exists l', a el l' /\ l' el l.
Proof.
induction l; cbn.
- intuition. now destruct H.
- rewrite in_app_iff, IHl. firstorder subst. auto.
Qed.
Lemma app_comm_cons' (A : Type) (x y : list A) (a : A) :
x ++ a :: y = (x ++ [a]) ++ y.
Proof. rewrite <- app_assoc. cbn. trivial. Qed.
Lemma skipn_nil (X : Type) (n : nat) : skipn n nil = @nil X.
Proof. destruct n; cbn; auto. Qed.
Lemma skipn_app (X : Type) (xs ys : list X) (n : nat) :
n = (| xs |) ->
skipn n (xs ++ ys) = ys.
Proof.
intros ->. revert ys. induction xs; cbn; auto.
Qed.
Lemma skipn_length (X : Type) (n : nat) (xs : list X) :
length (skipn n xs) = length xs - n.
Proof.
revert xs. induction n; intros; cbn.
- lia.
- destruct xs; cbn; auto.
Qed.
Lemma map_repeat (X Y : Type) (f : X -> Y) (n : nat) (a : X) :
map f (repeat a n) = repeat (f a) n.
Proof. induction n; cbn in *; f_equal; auto. Qed.
Lemma repeat_add_app (X : Type) (m n : nat) (a : X) :
repeat a (m + n) = repeat a m ++ repeat a n.
Proof. induction m; cbn; f_equal; auto. Qed.
Lemma repeat_S_cons (X : Type) (n : nat) (a : X) :
a :: repeat a n = repeat a n ++ [a].
Proof.
replace (a :: repeat a n) with (repeat a (S n)) by trivial. replace (S n) with (n+1) by lia.
rewrite repeat_add_app. cbn. trivial.
Qed.
Lemma repeat_app_eq (X : Type) (m n : nat) (a : X) :
repeat a n ++ repeat a m = repeat a m ++ repeat a n.
Proof. rewrite <- !repeat_add_app. f_equal. lia. Qed.
Lemma repeat_eq_iff (X : Type) (n : nat) (a : X) x :
x = repeat a n <-> length x = n /\ forall y, y el x -> y = a.
Proof.
split.
{
intros ->. split. apply repeat_length. apply repeat_spec.
}
{
revert x. induction n; intros x (H1&H2); cbn in *.
- destruct x; cbn in *; congruence.
- destruct x; cbn in *; inv H1. f_equal.
+ apply H2. auto.
+ apply IHn. auto.
}
Qed.
Lemma rev_repeat (X : Type) (n : nat) (a : X) :
rev (repeat a n) = repeat a n.
Proof.
apply repeat_eq_iff. split.
- rewrite rev_length. rewrite repeat_length. auto.
- intros y Hx % in_rev. eapply repeat_spec; eauto.
Qed.
Lemma concat_repeat_repeat (X : Type) (n m : nat) (a : X) :
concat (repeat (repeat a n) m) = repeat a (m*n).
Proof.
induction m as [ | m' IHm]; cbn.
- auto.
- rewrite repeat_add_app. f_equal. auto.
Qed.
Corollary skipn_repeat_add (X : Type) (n m : nat) (a : X) :
skipn n (repeat a (n + m)) = repeat a m.
Proof.
rewrite repeat_add_app. erewrite skipn_app; eauto. symmetry. apply repeat_length.
Qed.
Corollary skipn_repeat (X : Type) (n : nat) (a : X) :
skipn n (repeat a n) = nil.
Proof.
rewrite <- (app_nil_r (repeat a n)). erewrite skipn_app; eauto. symmetry. apply repeat_length.
Qed.
Lemma rev_eq_nil (Z: Type) (l: list Z) :
rev l = nil -> l = nil.
Proof. intros. destruct l; cbn in *. reflexivity. symmetry in H. now apply app_cons_not_nil in H. Qed.
Lemma map_eq_nil (Y Z: Type) (f: Y->Z) (l: list Y) :
map f l = nil -> l = nil.
Proof. intros. destruct l; cbn in *. reflexivity. congruence. Qed.
Lemma map_eq_nil' (Y Z: Type) (f: Y->Z) (l: list Y) :
nil = map f l -> l = nil.
Proof. now intros H % eq_sym % map_eq_nil. Qed.
Lemma map_eq_cons (A B: Type) (f: A->B) (xs: list A) (y: B) (ys: list B) :
map f xs = y :: ys ->
exists x xs', xs = x :: xs' /\
y = f x /\
ys = map f xs'.
Proof. induction xs; intros H; cbn in *; inv H; eauto. Qed.
Lemma map_eq_cons' (A B: Type) (f: A -> B) (xs: list A) (y: B) (ys: list B) :
y :: ys = map f xs ->
exists x xs', xs = x :: xs' /\
y = f x /\
ys = map f xs'.
Proof. now intros H % eq_sym % map_eq_cons. Qed.
Lemma map_eq_app (A B: Type) (f: A -> B) (ls : list A) (xs ys : list B) :
map f ls = xs ++ ys ->
exists ls1 ls2, ls = ls1 ++ ls2 /\
xs = map f ls1 /\
ys = map f ls2.
Proof.
revert xs ys. induction ls; intros; cbn in *.
- symmetry in H. apply app_eq_nil in H as (->&->). exists nil, nil. cbn. tauto.
- destruct xs; cbn in *.
+ exists nil. eexists. repeat split. cbn. now subst.
+ inv H. specialize IHls with (1 := H2) as (ls1&ls2&->&->&->).
repeat econstructor. 2: instantiate (1 := a :: ls1). all: reflexivity.
Qed.
Lemma rev_eq_cons (A: Type) (ls: list A) (x : A) (xs: list A) :
rev ls = x :: xs ->
ls = rev xs ++ [x].
Proof. intros H. rewrite <- rev_involutive at 1. rewrite H. cbn. reflexivity. Qed.
Lemma map_injective (X Y: Type) (f: X -> Y) :
(forall x y, f x = f y -> x = y) ->
forall xs ys, map f xs = map f ys -> xs = ys.
Proof.
intros HInj. hnf. intros x1. induction x1 as [ | x x1' IH]; intros; cbn in *.
- now apply map_eq_nil' in H.
- now apply map_eq_cons' in H as (l1&l2&->&->%HInj&->%IH).
Qed.
Instance map_ext_proper A B: Proper (@ pointwise_relation A B (@eq B) ==> (@eq (list A)) ==> (@eq (list B))) (@map A B).
Proof.
intros f f' Hf a ? <-. induction a;cbn;congruence.
Qed.
Lemma tl_map (A B: Type) (f: A -> B) (xs : list A) :
tl (map f xs) = map f (tl xs).
Proof. now destruct xs; cbn. Qed.
Lemma tl_app (A: Type) (xs ys : list A) :
xs <> nil ->
tl (xs ++ ys) = tl xs ++ ys.
Proof. destruct xs; cbn; congruence. Qed.
Lemma tl_rev (A: Type) (xs : list A) :
tl (rev xs) = rev (removelast xs).
Proof.
induction xs; cbn; auto.
destruct xs; cbn in *; auto.
rewrite tl_app; cbn in *.
- now rewrite IHxs.
- intros (H1&H2) % app_eq_nil; inv H2.
Qed.
Lemma hd_map (A B: Type) (f: A -> B) (xs : list A) (a : A) :
hd (f a) (map f xs) = f (hd a xs).
Proof. destruct xs; cbn; auto. Qed.
Lemma hd_app (A: Type) (xs ys : list A) a :
xs <> nil ->
hd a (xs ++ ys) = hd a xs.
Proof. intros H. destruct xs; auto. now contradiction H. Qed.
Lemma hd_rev (A: Type) (xs : list A) (a : A) :
hd a (rev xs) = last xs a.
Proof.
induction xs; cbn; auto.
destruct xs; cbn; auto.
rewrite hd_app. now apply IHxs.
intros (H1&H2)%app_eq_nil; inv H2.
Qed.