From Undecidability.Shared.Libs.PSL Require Import BaseLists.
Section Filter.
Variable X : Type.
Implicit Types (x y: X) (A B C: list X) (p q: X -> bool).
Lemma in_filter_iff x p A :
x el filter p A <-> x el A /\ p x.
Proof.
induction A as [|y A]; cbn.
- tauto.
- destruct (p y) eqn:E; cbn;
rewrite IHA; intuition; subst; auto.
destruct (p x); auto.
Qed.
Lemma filter_incl p A :
filter p A <<= A.
Proof.
intros x D. apply in_filter_iff in D. apply D.
Qed.
Lemma filter_mono p A B :
A <<= B -> filter p A <<= filter p B.
Proof.
intros D x E. apply in_filter_iff in E as [E E'].
apply in_filter_iff. auto.
Qed.
Lemma filter_id p A :
(forall x, x el A -> p x) -> filter p A = A.
Proof.
intros D.
induction A as [|x A]; cbn.
- reflexivity.
- destruct (p x) eqn:E.
+ f_equal; auto.
+ exfalso. apply bool_Prop_false in E. auto.
Qed.
Lemma filter_app p A B :
filter p (A ++ B) = filter p A ++ filter p B.
Proof.
induction A as [|y A]; cbn.
- reflexivity.
- rewrite IHA. destruct (p y); reflexivity.
Qed.
Lemma filter_fst p x A :
p x -> filter p (x::A) = x::filter p A.
Proof.
cbn. destruct (p x); auto.
Qed.
Lemma filter_fst' p x A :
~ p x -> filter p (x::A) = filter p A.
Proof.
cbn. destruct (p x); auto.
Qed.
Lemma filter_pq_mono p q A :
(forall x, x el A -> p x -> q x) -> filter p A <<= filter q A.
Proof.
intros D x E. apply in_filter_iff in E as [E E'].
apply in_filter_iff. auto.
Qed.
Lemma filter_pq_eq p q A :
(forall x, x el A -> p x = q x) -> filter p A = filter q A.
Proof.
intros C; induction A as [|x A]; cbn.
- reflexivity.
- destruct (p x) eqn:D, (q x) eqn:E.
+ f_equal. auto.
+ exfalso. enough (p x = q x) by congruence. auto.
+ exfalso. enough (p x = q x) by congruence. auto.
+ auto.
Qed.
Lemma filter_and p q A :
filter p (filter q A) = filter (fun x => p x && q x) A.
Proof.
induction A as [|x A]; cbn. reflexivity.
destruct (p x) eqn:E, (q x); cbn;
try rewrite E; now rewrite IHA.
Qed.
Lemma filter_comm p q A :
filter p (filter q A) = filter q (filter p A).
Proof.
rewrite !filter_and. apply filter_pq_eq.
intros x _. now destruct (p x), (q x).
Qed.
End Filter.
Lemma filter_map X Y p (f: X -> Y) A :
filter p (map f A) = map f (filter (fun x => p (f x)) A).
Proof.
induction A;cbn. reflexivity. destruct _;cbn; congruence.
Qed.
Section Filter.
Variable X : Type.
Implicit Types (x y: X) (A B C: list X) (p q: X -> bool).
Lemma in_filter_iff x p A :
x el filter p A <-> x el A /\ p x.
Proof.
induction A as [|y A]; cbn.
- tauto.
- destruct (p y) eqn:E; cbn;
rewrite IHA; intuition; subst; auto.
destruct (p x); auto.
Qed.
Lemma filter_incl p A :
filter p A <<= A.
Proof.
intros x D. apply in_filter_iff in D. apply D.
Qed.
Lemma filter_mono p A B :
A <<= B -> filter p A <<= filter p B.
Proof.
intros D x E. apply in_filter_iff in E as [E E'].
apply in_filter_iff. auto.
Qed.
Lemma filter_id p A :
(forall x, x el A -> p x) -> filter p A = A.
Proof.
intros D.
induction A as [|x A]; cbn.
- reflexivity.
- destruct (p x) eqn:E.
+ f_equal; auto.
+ exfalso. apply bool_Prop_false in E. auto.
Qed.
Lemma filter_app p A B :
filter p (A ++ B) = filter p A ++ filter p B.
Proof.
induction A as [|y A]; cbn.
- reflexivity.
- rewrite IHA. destruct (p y); reflexivity.
Qed.
Lemma filter_fst p x A :
p x -> filter p (x::A) = x::filter p A.
Proof.
cbn. destruct (p x); auto.
Qed.
Lemma filter_fst' p x A :
~ p x -> filter p (x::A) = filter p A.
Proof.
cbn. destruct (p x); auto.
Qed.
Lemma filter_pq_mono p q A :
(forall x, x el A -> p x -> q x) -> filter p A <<= filter q A.
Proof.
intros D x E. apply in_filter_iff in E as [E E'].
apply in_filter_iff. auto.
Qed.
Lemma filter_pq_eq p q A :
(forall x, x el A -> p x = q x) -> filter p A = filter q A.
Proof.
intros C; induction A as [|x A]; cbn.
- reflexivity.
- destruct (p x) eqn:D, (q x) eqn:E.
+ f_equal. auto.
+ exfalso. enough (p x = q x) by congruence. auto.
+ exfalso. enough (p x = q x) by congruence. auto.
+ auto.
Qed.
Lemma filter_and p q A :
filter p (filter q A) = filter (fun x => p x && q x) A.
Proof.
induction A as [|x A]; cbn. reflexivity.
destruct (p x) eqn:E, (q x); cbn;
try rewrite E; now rewrite IHA.
Qed.
Lemma filter_comm p q A :
filter p (filter q A) = filter q (filter p A).
Proof.
rewrite !filter_and. apply filter_pq_eq.
intros x _. now destruct (p x), (q x).
Qed.
End Filter.
Lemma filter_map X Y p (f: X -> Y) A :
filter p (map f A) = map f (filter (fun x => p (f x)) A).
Proof.
induction A;cbn. reflexivity. destruct _;cbn; congruence.
Qed.