From Undecidability Require Import TM.Util.Prelim TM.Util.TM_facts.
Section Mirror.
Variable (n : nat) (sig : finType).
Definition mirror_act : (option sig * move) -> (option sig * move) :=
map_snd mirror_move.
Definition mirror_acts : Vector.t (option sig * move) n -> Vector.t (option sig * move) n :=
Vector.map mirror_act.
Lemma mirror_act_involution a : mirror_act (mirror_act a) = a.
Proof. destruct a. cbn. rewrite mirror_move_involution. reflexivity. Qed.
Lemma mirror_acts_involution acts :
mirror_acts (mirror_acts acts) = acts.
Proof.
unfold mirror_acts. apply Vector.eq_nth_iff. intros ? ? ->.
erewrite !Vector.nth_map; eauto. apply mirror_act_involution.
Qed.
Variable F : finType.
Variable pM : pTM sig F n.
Definition Mirror_trans :
state (projT1 pM) * Vector.t (option sig) n ->
state (projT1 pM) *
Vector.t (option sig * move) n :=
fun qsym =>
let (q', act) := trans qsym in
(q', mirror_acts act).
Definition MirrorTM : TM sig n :=
{|
trans := Mirror_trans;
start := start (projT1 pM);
halt := halt (m := projT1 pM);
|}.
Definition Mirror : pTM sig F n :=
(MirrorTM; projT2 pM).
Definition mirrorConf : mconfig sig (state (projT1 pM)) n -> mconfig sig (state (projT1 pM)) n :=
fun c => mk_mconfig (cstate c) (mirror_tapes (ctapes c)).
Lemma mirrorConf_involution c : mirrorConf (mirrorConf c) = c.
Proof. destruct c as [q t]. unfold mirrorConf. cbn. f_equal. apply mirror_tapes_involution. Qed.
Lemma mirrorConf_injective c1 c2 : mirrorConf c1 = mirrorConf c2 -> c1 = c2.
Proof. destruct c1 as [q1 t1], c2 as [q2 t2]. unfold mirrorConf. cbn. intros H; inv H. f_equal. now apply mirror_tapes_injective. Qed.
Lemma current_chars_mirror_tapes (t : tapes sig n) :
current_chars (mirror_tapes t) = current_chars t.
Proof. apply Vector.eq_nth_iff; intros i ? <-. autounfold with tape. now simpl_tape. Qed.
Lemma doAct_mirror (t : tape sig) (act : option sig * move) :
doAct (mirror_tape t) act = mirror_tape (doAct t (mirror_act act)).
Proof. now destruct act as [ [ s | ] [ | | ]]; cbn; simpl_tape. Qed.
Lemma doAct_mirror_multi (t : tapes sig n) (acts : Vector.t (option sig * move) n) :
doAct_multi (mirror_tapes t) acts = mirror_tapes (doAct_multi t (mirror_acts acts)).
Proof. apply Vector.eq_nth_iff; intros i ? <-. unfold doAct_multi, mirror_acts, mirror_tapes. simpl_tape. apply doAct_mirror. Qed.
Lemma mirror_step c :
step (M := projT1 pM) (mirrorConf c) = mirrorConf (step (M := projT1 Mirror) c).
Proof.
unfold step; cbn -[doAct_multi]. unfold Mirror_trans. cbn.
destruct c as [q t]; cbn. rewrite current_chars_mirror_tapes.
destruct (trans (q, current_chars t)) as [q' acts].
unfold mirrorConf; cbn. f_equal. apply doAct_mirror_multi.
Qed.
Lemma mirror_lift k c1 c2 :
loopM (M := projT1 Mirror) c1 k = Some c2 ->
loopM (M := projT1 pM ) (mirrorConf c1) k = Some (mirrorConf c2).
Proof.
unfold loopM. intros HLoop.
apply loop_lift with (lift := mirrorConf) (f' := step (M:=projT1 pM)) (h' := haltConf (M:=projT1 pM)) in HLoop; auto.
- intros ? _. now apply mirror_step.
Qed.
Lemma mirror_unlift k c1 c2 :
loopM (M := projT1 pM) (mirrorConf c1) k = Some (mirrorConf c2) ->
loopM (M := projT1 Mirror) ( c1) k = Some ( c2).
Proof.
unfold loopM. intros HLoop.
apply loop_unlift with (lift := mirrorConf) (f := step (M:=MirrorTM)) (h := haltConf (M:=MirrorTM)) in HLoop
as (? & HLoop & <- % mirrorConf_injective); auto.
- intros ? _. now apply mirror_step.
Qed.
Definition Mirror_Rel (R : pRel sig F n) : pRel sig F n :=
fun t '(l, t') => R (mirror_tapes t) (l, mirror_tapes t').
Lemma Mirror_Realise R :
pM ⊨ R -> Mirror ⊨ Mirror_Rel R.
Proof.
intros HRealise. intros t i outc HLoop.
apply (HRealise (mirror_tapes t) i (mirrorConf outc)).
now apply mirror_lift in HLoop.
Qed.
Definition Mirror_T (T : tRel sig n) : tRel sig n :=
fun t k => T (mirror_tapes t) k.
Lemma Mirror_Terminates T :
projT1 pM ↓ T -> projT1 Mirror ↓ Mirror_T T.
Proof.
intros HTerm. hnf. intros t1 k H1. hnf in HTerm. specialize (HTerm (mirror_tapes t1) k H1) as (outc&H).
exists (mirrorConf outc). apply mirror_unlift. cbn. now rewrite mirrorConf_involution.
Qed.
Lemma Mirror_RealiseIn R (k : nat) :
pM ⊨c(k) R -> Mirror ⊨c(k) Mirror_Rel R.
Proof.
intros H.
eapply Realise_total. split.
- eapply Mirror_Realise. now eapply Realise_total.
- eapply TerminatesIn_monotone.
+ eapply Mirror_Terminates. now eapply Realise_total.
+ firstorder.
Qed.
End Mirror.
Arguments Mirror : simpl never.
Arguments Mirror_Rel { n sig F } R x y /.
Arguments Mirror_T { n sig } T x y /.
Ltac smpl_TM_Mirror :=
once lazymatch goal with
| [ |- Mirror _ ⊨ _ ] => eapply Mirror_Realise
| [ |- Mirror _ ⊨c(_) _ ] => eapply Mirror_RealiseIn
| [ |- projT1 (Mirror _) ↓ _ ] => eapply Mirror_Terminates
end.
Smpl Add smpl_TM_Mirror : TM_Correct.
Section Mirror.
Variable (n : nat) (sig : finType).
Definition mirror_act : (option sig * move) -> (option sig * move) :=
map_snd mirror_move.
Definition mirror_acts : Vector.t (option sig * move) n -> Vector.t (option sig * move) n :=
Vector.map mirror_act.
Lemma mirror_act_involution a : mirror_act (mirror_act a) = a.
Proof. destruct a. cbn. rewrite mirror_move_involution. reflexivity. Qed.
Lemma mirror_acts_involution acts :
mirror_acts (mirror_acts acts) = acts.
Proof.
unfold mirror_acts. apply Vector.eq_nth_iff. intros ? ? ->.
erewrite !Vector.nth_map; eauto. apply mirror_act_involution.
Qed.
Variable F : finType.
Variable pM : pTM sig F n.
Definition Mirror_trans :
state (projT1 pM) * Vector.t (option sig) n ->
state (projT1 pM) *
Vector.t (option sig * move) n :=
fun qsym =>
let (q', act) := trans qsym in
(q', mirror_acts act).
Definition MirrorTM : TM sig n :=
{|
trans := Mirror_trans;
start := start (projT1 pM);
halt := halt (m := projT1 pM);
|}.
Definition Mirror : pTM sig F n :=
(MirrorTM; projT2 pM).
Definition mirrorConf : mconfig sig (state (projT1 pM)) n -> mconfig sig (state (projT1 pM)) n :=
fun c => mk_mconfig (cstate c) (mirror_tapes (ctapes c)).
Lemma mirrorConf_involution c : mirrorConf (mirrorConf c) = c.
Proof. destruct c as [q t]. unfold mirrorConf. cbn. f_equal. apply mirror_tapes_involution. Qed.
Lemma mirrorConf_injective c1 c2 : mirrorConf c1 = mirrorConf c2 -> c1 = c2.
Proof. destruct c1 as [q1 t1], c2 as [q2 t2]. unfold mirrorConf. cbn. intros H; inv H. f_equal. now apply mirror_tapes_injective. Qed.
Lemma current_chars_mirror_tapes (t : tapes sig n) :
current_chars (mirror_tapes t) = current_chars t.
Proof. apply Vector.eq_nth_iff; intros i ? <-. autounfold with tape. now simpl_tape. Qed.
Lemma doAct_mirror (t : tape sig) (act : option sig * move) :
doAct (mirror_tape t) act = mirror_tape (doAct t (mirror_act act)).
Proof. now destruct act as [ [ s | ] [ | | ]]; cbn; simpl_tape. Qed.
Lemma doAct_mirror_multi (t : tapes sig n) (acts : Vector.t (option sig * move) n) :
doAct_multi (mirror_tapes t) acts = mirror_tapes (doAct_multi t (mirror_acts acts)).
Proof. apply Vector.eq_nth_iff; intros i ? <-. unfold doAct_multi, mirror_acts, mirror_tapes. simpl_tape. apply doAct_mirror. Qed.
Lemma mirror_step c :
step (M := projT1 pM) (mirrorConf c) = mirrorConf (step (M := projT1 Mirror) c).
Proof.
unfold step; cbn -[doAct_multi]. unfold Mirror_trans. cbn.
destruct c as [q t]; cbn. rewrite current_chars_mirror_tapes.
destruct (trans (q, current_chars t)) as [q' acts].
unfold mirrorConf; cbn. f_equal. apply doAct_mirror_multi.
Qed.
Lemma mirror_lift k c1 c2 :
loopM (M := projT1 Mirror) c1 k = Some c2 ->
loopM (M := projT1 pM ) (mirrorConf c1) k = Some (mirrorConf c2).
Proof.
unfold loopM. intros HLoop.
apply loop_lift with (lift := mirrorConf) (f' := step (M:=projT1 pM)) (h' := haltConf (M:=projT1 pM)) in HLoop; auto.
- intros ? _. now apply mirror_step.
Qed.
Lemma mirror_unlift k c1 c2 :
loopM (M := projT1 pM) (mirrorConf c1) k = Some (mirrorConf c2) ->
loopM (M := projT1 Mirror) ( c1) k = Some ( c2).
Proof.
unfold loopM. intros HLoop.
apply loop_unlift with (lift := mirrorConf) (f := step (M:=MirrorTM)) (h := haltConf (M:=MirrorTM)) in HLoop
as (? & HLoop & <- % mirrorConf_injective); auto.
- intros ? _. now apply mirror_step.
Qed.
Definition Mirror_Rel (R : pRel sig F n) : pRel sig F n :=
fun t '(l, t') => R (mirror_tapes t) (l, mirror_tapes t').
Lemma Mirror_Realise R :
pM ⊨ R -> Mirror ⊨ Mirror_Rel R.
Proof.
intros HRealise. intros t i outc HLoop.
apply (HRealise (mirror_tapes t) i (mirrorConf outc)).
now apply mirror_lift in HLoop.
Qed.
Definition Mirror_T (T : tRel sig n) : tRel sig n :=
fun t k => T (mirror_tapes t) k.
Lemma Mirror_Terminates T :
projT1 pM ↓ T -> projT1 Mirror ↓ Mirror_T T.
Proof.
intros HTerm. hnf. intros t1 k H1. hnf in HTerm. specialize (HTerm (mirror_tapes t1) k H1) as (outc&H).
exists (mirrorConf outc). apply mirror_unlift. cbn. now rewrite mirrorConf_involution.
Qed.
Lemma Mirror_RealiseIn R (k : nat) :
pM ⊨c(k) R -> Mirror ⊨c(k) Mirror_Rel R.
Proof.
intros H.
eapply Realise_total. split.
- eapply Mirror_Realise. now eapply Realise_total.
- eapply TerminatesIn_monotone.
+ eapply Mirror_Terminates. now eapply Realise_total.
+ firstorder.
Qed.
End Mirror.
Arguments Mirror : simpl never.
Arguments Mirror_Rel { n sig F } R x y /.
Arguments Mirror_T { n sig } T x y /.
Ltac smpl_TM_Mirror :=
once lazymatch goal with
| [ |- Mirror _ ⊨ _ ] => eapply Mirror_Realise
| [ |- Mirror _ ⊨c(_) _ ] => eapply Mirror_RealiseIn
| [ |- projT1 (Mirror _) ↓ _ ] => eapply Mirror_Terminates
end.
Smpl Add smpl_TM_Mirror : TM_Correct.