From Undecidability.Shared.Libs.PSL Require Export BasicDefinitions.
From Undecidability.Shared.Libs.PSL Require Import Bijection.
Class finTypeC (type:eqType) : Type :=
FinTypeC {
enum: list type;
enum_ok: forall x: type, count enum x = 1
}.
Structure finType : Type :=
FinType
{
type:> eqType;
class: finTypeC type
}.
Arguments FinType type {class}.
Existing Instance class | 0.
Hint Extern 5 (finTypeC (EqType ?x)) => unfold x : typeclass_instances.
Canonical Structure finType_CS (X : Type) {p : eq_dec X} {class : finTypeC (EqType X)} : finType := FinType (EqType X).
Arguments finType_CS (X) {_ _}.
Definition elem (F: finType) := @enum (type F) (class F).
Hint Unfold elem : core.
Hint Unfold class : core.
Lemma elem_spec (X: finType) (x:X) : x el (elem X).
Proof.
apply countIn. pose proof (enum_ok x) as H. unfold elem. lia.
Qed.
Hint Resolve elem_spec : core.
Hint Resolve enum_ok : core.
Lemma allSub (X: finType) (A:list X) : A <<= elem X.
Proof.
intros x _. apply elem_spec.
Qed.
Hint Resolve allSub : core.
Theorem Equivalence_property_all (X: finType) (p: X -> Prop) :
(forall x, p x) <-> forall x, x el (elem X) -> p x.
Proof.
split; auto.
Qed.
Theorem Equivalence_property_exists (X: finType) (p:X -> Prop):
(exists x, p x) <-> exists x, x el (elem X) /\ p x.
Proof.
split.
- intros [x P]. eauto.
- intros [x [E P]]. eauto.
Qed.
Instance finType_forall_dec (X: finType) (p: X -> Prop): (forall x, dec (p x)) -> dec (forall x, p x).
Proof.
intros D. eapply dec_transfer.
- symmetry. exact (Equivalence_property_all p).
- auto.
Qed.
Instance finType_exists_dec (X:finType) (p: X -> Prop) : (forall x, dec (p x)) -> dec (exists x, p x).
Proof.
intros D. eapply dec_transfer.
- symmetry. exact (Equivalence_property_exists p).
- auto.
Qed.
Definition finType_cc (X: finType) (p: X -> Prop) (D: forall x, dec (p x)) : (exists x, p x) -> {x | p x}.
Proof.
intro H.
assert(exists x, x el (elem X) /\ p x) as E by firstorder.
pose proof (list_cc D E) as [x G].
now exists x.
Defined.
Definition pickx (X: finType): X + (X -> False).
Proof.
destruct X as [X [enum ok]]. induction enum.
- right. intro x. discriminate (ok x).
- tauto.
Defined.
Lemma DM_notAll (X: finType) (p: X -> Prop) (D:forall x, dec (p x)): (~ (forall x, p x)) <-> exists x, ~ (p x).
Proof.
decide (exists x,~ p x); firstorder.
Qed.
Lemma DM_exists (X: finType) (p: X -> Prop) (D: forall x, dec (p x)):
(exists x, p x) <-> ~(forall x, ~ p x).
Proof.
split.
- firstorder.
- decide (exists x, p x); firstorder.
Qed.
Fixpoint getPosition {E: eqType} (A: list E) x := match A with
| nil => 0
| cons x' A' => if Dec (x=x') then 0 else 1 + getPosition A' x end.
Lemma getPosition_correct {E: eqType} (x:E) A: if Dec (x el A) then forall z, (nth (getPosition A x) A z) = x else getPosition A x = |A |.
Proof.
induction A;cbn.
-repeat destruct Dec;tauto.
-repeat destruct Dec;intuition; congruence.
Qed.
Lemma getPosition_nth (X:eqType) k (d :X) xs:
Dupfree.dupfree xs ->
k < length xs ->
getPosition xs (nth k xs d) = k.
Proof.
induction xs in k|-*. now cbn.
intros H1 H2. inv H1.
cbn. destruct k.
-decide _. all:easy.
-decide _.
+subst a. cbn in H2. edestruct H3. eapply nth_In. lia.
+ cbn in H2. rewrite IHxs. all:try easy;lia.
Qed.
Definition pos_def (X : eqType) (x : X) A n := match pos x A with None => n | Some n => n end.
Definition index {F: finType} (x:F) := getPosition (elem F) x.
Lemma index_nth {F : finType} (x:F) y: nth (index x) (elem F) y = x.
Proof.
unfold index, elem, enum.
destruct F as [[X E] [A all_A]];cbn.
pose proof (getPosition_correct x A) as H.
destruct Dec. auto. apply notInZero in n. now setoid_rewrite all_A in n.
Qed.
Lemma injective_index (A: finType) (x1 x2 : A) : index x1 = index x2 -> x1 = x2.
Proof.
destruct (elem A) eqn:E.
- hnf. intros. assert (x1 el elem A) by eauto using elem_spec. rewrite E in H0. auto.
- clear E. eapply (left_inv_inj (g := (fun y => nth y (elem A) e))).
hnf. intros. now rewrite index_nth.
Qed.
Lemma index_le (A:finType) (x:A): index x < length (elem A).
Proof.
unfold index.
assert (H:x el elem A) by apply elem_spec.
revert H.
generalize (elem A). intros l H.
induction l;cbn;[|decide _].
-easy.
-lia.
-destruct H. congruence. apply IHl in H. lia.
Qed.
Lemma index_leq (A:finType) (x:A): index x <= length (elem A).
Proof.
eapply Nat.lt_le_incl,index_le.
Qed.
From Undecidability.Shared.Libs.PSL Require Import Bijection.
Class finTypeC (type:eqType) : Type :=
FinTypeC {
enum: list type;
enum_ok: forall x: type, count enum x = 1
}.
Structure finType : Type :=
FinType
{
type:> eqType;
class: finTypeC type
}.
Arguments FinType type {class}.
Existing Instance class | 0.
Hint Extern 5 (finTypeC (EqType ?x)) => unfold x : typeclass_instances.
Canonical Structure finType_CS (X : Type) {p : eq_dec X} {class : finTypeC (EqType X)} : finType := FinType (EqType X).
Arguments finType_CS (X) {_ _}.
Definition elem (F: finType) := @enum (type F) (class F).
Hint Unfold elem : core.
Hint Unfold class : core.
Lemma elem_spec (X: finType) (x:X) : x el (elem X).
Proof.
apply countIn. pose proof (enum_ok x) as H. unfold elem. lia.
Qed.
Hint Resolve elem_spec : core.
Hint Resolve enum_ok : core.
Lemma allSub (X: finType) (A:list X) : A <<= elem X.
Proof.
intros x _. apply elem_spec.
Qed.
Hint Resolve allSub : core.
Theorem Equivalence_property_all (X: finType) (p: X -> Prop) :
(forall x, p x) <-> forall x, x el (elem X) -> p x.
Proof.
split; auto.
Qed.
Theorem Equivalence_property_exists (X: finType) (p:X -> Prop):
(exists x, p x) <-> exists x, x el (elem X) /\ p x.
Proof.
split.
- intros [x P]. eauto.
- intros [x [E P]]. eauto.
Qed.
Instance finType_forall_dec (X: finType) (p: X -> Prop): (forall x, dec (p x)) -> dec (forall x, p x).
Proof.
intros D. eapply dec_transfer.
- symmetry. exact (Equivalence_property_all p).
- auto.
Qed.
Instance finType_exists_dec (X:finType) (p: X -> Prop) : (forall x, dec (p x)) -> dec (exists x, p x).
Proof.
intros D. eapply dec_transfer.
- symmetry. exact (Equivalence_property_exists p).
- auto.
Qed.
Definition finType_cc (X: finType) (p: X -> Prop) (D: forall x, dec (p x)) : (exists x, p x) -> {x | p x}.
Proof.
intro H.
assert(exists x, x el (elem X) /\ p x) as E by firstorder.
pose proof (list_cc D E) as [x G].
now exists x.
Defined.
Definition pickx (X: finType): X + (X -> False).
Proof.
destruct X as [X [enum ok]]. induction enum.
- right. intro x. discriminate (ok x).
- tauto.
Defined.
Lemma DM_notAll (X: finType) (p: X -> Prop) (D:forall x, dec (p x)): (~ (forall x, p x)) <-> exists x, ~ (p x).
Proof.
decide (exists x,~ p x); firstorder.
Qed.
Lemma DM_exists (X: finType) (p: X -> Prop) (D: forall x, dec (p x)):
(exists x, p x) <-> ~(forall x, ~ p x).
Proof.
split.
- firstorder.
- decide (exists x, p x); firstorder.
Qed.
Fixpoint getPosition {E: eqType} (A: list E) x := match A with
| nil => 0
| cons x' A' => if Dec (x=x') then 0 else 1 + getPosition A' x end.
Lemma getPosition_correct {E: eqType} (x:E) A: if Dec (x el A) then forall z, (nth (getPosition A x) A z) = x else getPosition A x = |A |.
Proof.
induction A;cbn.
-repeat destruct Dec;tauto.
-repeat destruct Dec;intuition; congruence.
Qed.
Lemma getPosition_nth (X:eqType) k (d :X) xs:
Dupfree.dupfree xs ->
k < length xs ->
getPosition xs (nth k xs d) = k.
Proof.
induction xs in k|-*. now cbn.
intros H1 H2. inv H1.
cbn. destruct k.
-decide _. all:easy.
-decide _.
+subst a. cbn in H2. edestruct H3. eapply nth_In. lia.
+ cbn in H2. rewrite IHxs. all:try easy;lia.
Qed.
Definition pos_def (X : eqType) (x : X) A n := match pos x A with None => n | Some n => n end.
Definition index {F: finType} (x:F) := getPosition (elem F) x.
Lemma index_nth {F : finType} (x:F) y: nth (index x) (elem F) y = x.
Proof.
unfold index, elem, enum.
destruct F as [[X E] [A all_A]];cbn.
pose proof (getPosition_correct x A) as H.
destruct Dec. auto. apply notInZero in n. now setoid_rewrite all_A in n.
Qed.
Lemma injective_index (A: finType) (x1 x2 : A) : index x1 = index x2 -> x1 = x2.
Proof.
destruct (elem A) eqn:E.
- hnf. intros. assert (x1 el elem A) by eauto using elem_spec. rewrite E in H0. auto.
- clear E. eapply (left_inv_inj (g := (fun y => nth y (elem A) e))).
hnf. intros. now rewrite index_nth.
Qed.
Lemma index_le (A:finType) (x:A): index x < length (elem A).
Proof.
unfold index.
assert (H:x el elem A) by apply elem_spec.
revert H.
generalize (elem A). intros l H.
induction l;cbn;[|decide _].
-easy.
-lia.
-destruct H. congruence. apply IHl in H. lia.
Qed.
Lemma index_leq (A:finType) (x:A): index x <= length (elem A).
Proof.
eapply Nat.lt_le_incl,index_le.
Qed.