Constructive Analysis of Completeness Theorems


From Undecidability.FOLC Require Export Gentzen.
From Undecidability.FOLC Require Export Kripke.
From Undecidability.FOLC Require Export GenCompleteness.
From Undecidability.FOLC Require Export Stability.

Exploding and Minimal Models


Section KripkeCompleteness.
  Context {Sigma : Signature}.

  Hint Constructors sprv.

  Instance universal_interp : interp term :=
    {| i_f := Func ; i_F := False ; i_P := fun _ _ => False |}.

  Lemma universal_interp_eval rho t :
    eval rho t = t[rho].
  Proof.
    induction t using strong_term_ind; comp; asimpl; try congruence. f_equal.
  Qed.

  Section Contexts.
    Context {b : bottom}.

    Instance K_ctx : kmodel term :=
      {|
        reachable := @incl form ;
        k_interp := universal_interp ;
        k_P := fun A P v => sprv b A None (Pred P v) ;
        k_Bot := fun A => sprv b A None
      |}.
    Proof.
      1,3,4: abstract (eauto using seq_Weak).
      - abstract (intuition; now apply (incl_tran H)).
    Defined.

    Lemma K_ctx_correct (A : list form) rho phi :
      (rho ⊨(A, K_ctx ) phi -> A S phi[rho]) /\
      ((forall B psi, A <<= B -> B ;; phi[rho] s psi -> B S psi) -> rho ⊨(A, K_ctx) phi).
    Proof.
      revert A rho; enough ((forall A rho, rho ⊨( A, K_ctx) phi -> A S phi[rho]) /\
                          (forall A rho, (forall B psi, A <<= B -> B;; phi[rho] s psi -> B S psi)
                                  -> rho ⊨( A, K_ctx) phi)) by intuition.
      induction phi as [|t1 t2|phi [IHphi1 IHphi2] psi [IHpsi1 IHpsi2]|phi [IHphi1 IHphi2]]; cbn; asimpl; split; intros A rho.
      - tauto.
      - eauto.
      - now rewrite (vec_ext (fun x => universal_interp_eval rho x)).
      - rewrite (vec_ext (fun x => universal_interp_eval rho x)). eauto.
      - intros Hsat. apply IR, IHpsi1. apply Hsat, IHphi2. 1: intuition. eauto.
      - intros H B HB Hphi % IHphi1. apply IHpsi2. intros C xi HC Hxi. apply H.
        1: now transitivity B. eauto using seq_Weak.
      - intros Hsat. apply AllR.
        pose (phi' := subst_form (var_term 0 .: (rho >> subst_term (S >> var_term))) phi).
        destruct (find_unused_L (phi' :: A)).
        eapply seq_nameless_equiv with (n := x) (phi0 := phi').
        + intros xi Hxi. apply u. constructor. intuition.
        + apply u. omega. intuition.
        + asimpl. apply IHphi1. rewrite ksat_ext. 2: reflexivity. now apply Hsat.
      - intros H t. apply IHphi2. intros B psi HB Hpsi. apply H. assumption.
        apply AllL with (t0 := t). now asimpl in *.
    Qed.

    Lemma K_ctx_constraint :
      (if b then kexploding else kbottomless) term K_ctx.
    Proof.
      destruct b eqn : Hb; try now intros.
      intros A rho phi v B HB. apply K_ctx_correct.
      intros B' psi HB' Hprv. comp. subst. eauto using seq_Weak.
    Qed.

    Corollary K_ctx_sprv A rho phi :
      rho ⊨(A, K_ctx) phi -> A S phi[rho].
    Proof.
      now destruct (K_ctx_correct A rho phi).
    Qed.

    Lemma eval_id t :
      eval (fun n : fin => var_term n) t = t.
    Proof.
      induction t using strong_term_ind; comp; asimpl; try congruence. f_equal.
      erewrite vec_map_ext; try apply H. now apply vec_id.
    Qed.

    Lemma K_ctx_subst A phi rho :
      rho ⊨( A, K_ctx) phi <-> (fun n => var_term n) ⊨( A, K_ctx) phi[rho].
    Proof.
      rewrite (ksat_comp A (fun n : fin => var_term n) rho phi).
      apply ksat_ext. intros x. asimpl. now rewrite eval_id.
    Qed.

    Fact K_ctx_sprv' A rho phi :
      A S phi[rho] -> rho ⊨(A, K_ctx) phi.
    Proof.
      intros H % seq_ND. apply K_ctx_subst.
      eapply ksoundness with (C := if b then kexploding else kbottomless); eauto.
      - destruct b. firstorder. discriminate.
      - apply K_ctx_constraint.
      - cbn in H. intros psi HP. apply K_ctx_correct.
        intros B theta H1 H2. eapply Contr; eauto.
        specialize (idSubst_form (fun n : fin => var_term n)) with (s:=psi).
        intros H'. apply H1. now rewrite <- H' in HP.
    Qed.

    Corollary K_ctx_ksat A rho phi :
      (forall B psi, A <<= B -> B ;; phi[rho] s psi -> B S psi) -> rho ⊨(A, K_ctx) phi.
    Proof.
      now destruct (K_ctx_correct A rho phi).
    Qed.
  End Contexts.

  Section ExplodingCompleteness.

    Lemma K_ctx_exploding :
      kexploding (@K_ctx expl).
    Proof.
      apply (@K_ctx_constraint expl).
    Qed.

    Lemma K_exp_completeness A phi :
      A KE phi -> A SE phi.
    Proof.
      intros Hsat. erewrite <-idSubst_form. apply K_ctx_sprv with (rho := ids). 2: reflexivity.
      apply Hsat. 1: apply K_ctx_exploding. intros psi Hpsi. apply K_ctx_ksat. intros B xi HB Hxi.
      asimpl in Hxi. eauto.
    Qed.

    Lemma K_exp_seq_ksoundness A phi :
      A SE phi -> A KE phi.
    Proof.
      intros H % seq_ND. apply @ksoundness with (b := expl). 2: apply H. firstorder.
    Qed.

    Fact SE_cut A phi psi :
      A SE phi -> A;;phi sE psi -> A SE psi.
    Proof.
      intros H1 % seq_ND H2 % seq_ND; cbn in *.
      apply H2 in H1. apply K_exp_completeness.
      apply @ksoundness with (b := expl); firstorder.
    Qed.

  End ExplodingCompleteness.

  Section BottomlessCompleteness.
    Lemma K_bottomless_completeness A phi :
      A KBL phi -> A SL phi.
    Proof.
      intros Hsat. erewrite <-idSubst_form. apply K_ctx_sprv with (rho := ids). 2: reflexivity.
      apply Hsat. 1: apply I. intros psi Hpsi. apply K_ctx_ksat. intros B xi HB Hxi.
      asimpl in Hxi. eauto.
    Qed.
  End BottomlessCompleteness.

Standard Models


  Section StandardCompleteness.
    Context {HdF : eq_dec Funcs} {HdP : eq_dec Preds}.
    Context {HeF : enumT Funcs} {HeP : enumT Preds}.

    Definition cons A := ~ A SE .
    Definition cons_ctx := { A | cons A }.
    Definition ctx_incl (A B : cons_ctx) := incl (proj1_sig A) (proj1_sig B).

    Hint Unfold cons cons_ctx ctx_incl.

    Notation "A <<=C B" := (ctx_incl A B) (at level 20).
    Notation "A ⊢SC phi" := (proj1_sig A SE phi) (at level 20).
    Notation "A ;; psi ⊢sC phi" := (proj1_sig A ;; psi sE phi) (at level 20).

    Ltac dest_con_ctx :=
      match goal with
      | [ |- forall u : cons_ctx, _] => let Hu := fresh "H" u in intros [u Hu]
      | [ A : cons_ctx |- _] => let HA := fresh "H" A in destruct A as [A HA]
      end.

    Ltac cctx := repeat (progress dest_con_ctx); comp.

    Hint Extern 1 => cctx.

    Instance K_std : kmodel term :=
      {|
        reachable := ctx_incl ;
        k_interp := universal_interp ;
        k_P := fun A P v => ~ ~ A SC (Pred P v) ;
        k_Bot := fun _ => False
      |}.
    Proof.
      - abstract eauto.
      - abstract (cctx; firstorder).
      - intros A B H P t H1 H2. apply H1. intros H3. apply H2.
        abstract (eauto using seq_Weak).
      - abstract (cctx; firstorder).
    Defined.

    Lemma K_std_standard :
      kstandard K_std.
    Proof.
      intros []. cbn. trivial.
    Qed.

    Lemma K_std_correct (A : cons_ctx) rho phi :
      (rho ⊨(A, K_std) phi -> ~ ~ A SC phi[rho]) /\
      ((forall B psi, A <<=C B -> B ;; phi[rho] sC psi -> ~ ~ B SC psi) -> rho ⊨(A, K_std) phi).
    Proof.
      revert A rho; enough ((forall A rho, rho ⊨( A, K_std) phi -> ~ ~ A SC phi[rho])
                          /\ (forall A rho, (forall B psi, A <<=C B -> B;; phi[rho] sC psi -> ~ ~ B SC psi)
                                    -> rho ⊨( A, K_std) phi)) by firstorder.
      induction phi as [| t1 t2 | phi [IHphi1 IHphi2] psi [IHpsi1 IHpsi2] | phi [IHphi1 IHphi2]].
      all: cbn; asimpl; split; intros A rho.
      - tauto.
      - intros H. exfalso. apply (H A ); auto.
      - now rewrite (vec_ext (fun x => universal_interp_eval rho x)).
      - rewrite (vec_ext (fun x => universal_interp_eval rho x)). intros H H'.
        eapply H. 3: { intros H1. apply H', H1. } all: auto.
      - intros Hsat H.
        assert (HA : ~ ~ ((phi[rho] :: proj1_sig A) SE \/ ~ (phi[rho] :: proj1_sig A) SE )) by tauto.
        apply HA. clear HA. intros [HA|HA].
        + apply H. apply IR. apply Absurd. assumption.
        + pose (A' := exist cons (phi[rho] :: proj1_sig A) HA). apply (IHpsi1 A' rho).
          * apply Hsat; auto 3. apply IHphi2. intros B theta HB HT.
            intros H'. apply H'. eauto.
          * intros H'. apply H. apply IR, H'.
      - intros H B HB Hphi % IHphi1. apply IHpsi2. intros C xi HC Hxi.
        intros HX. apply Hphi. intros Hphi'. apply (H C xi); trivial.
        + cctx. now transitivity B.
        + apply IL; trivial. eapply seq_Weak; eauto.
      - pose (phi' := subst_form (var_term 0 .: (rho >> subst_term (S >> var_term))) phi).
        intros Hsat. intros H. cctx. destruct (find_unused_L (phi' :: A)).
        apply (IHphi1 (exist cons A HA) (var_term x.:rho)).
        rewrite ksat_ext. 2: reflexivity. now apply Hsat.
        intros H'. apply H, AllR.
        eapply seq_nameless_equiv with (n := x) (phi0 := phi').
        + intros xi Hxi. apply u. constructor. intuition.
        + apply u. omega. intuition.
        + asimpl. apply H'.
      - intros H t. apply IHphi2. intros B psi HB Hpsi. apply H. assumption.
        apply AllL with (t0 := t). now asimpl in *.
    Qed.

    Corollary K_std_sprv A rho phi :
      rho ⊨(A, K_std) phi -> ~ ~ A SC phi[rho].
    Proof.
      now destruct (K_std_correct A rho phi).
    Qed.

    Corollary K_std_sprv' A rho phi :
       ~ ~ A SC phi[rho] -> rho ⊨(A, K_std) phi.
    Proof.
      intros H. apply (K_std_correct A rho phi).
      intros B psi H1 H2 H3. apply H. intros H'.
      apply H3. eapply SE_cut; try eassumption.
      now apply (seq_Weak H').
    Qed.

    Corollary K_std_ksat A rho phi :
      (forall B psi, A <<=C B -> B ;; phi[rho] sC psi -> ~ ~ B SC psi) -> rho ⊨(A, K_std) phi.
    Proof.
      now destruct (K_std_correct A rho phi).
    Qed.

    Lemma K_std_completeness A phi :
      A KS phi -> ~ ~ A SE phi.
    Proof.
      intros Hsat H.
      assert (HA : ~ ~ (A SE \/ ~ A SE )) by tauto.
      apply HA. clear HA. intros [HA|HA].
      - apply H. apply Absurd. assumption.
      - specialize (Hsat _ K_std K_std_standard (exist cons A HA) ids).
        apply K_std_sprv in Hsat.
        + apply Hsat. intros Hsat'. apply H.
          rewrite <- idSubst_form with ids phi; trivial.
        + intros psi Hpsi. apply K_std_ksat.
          intros B xi HB Hxi. asimpl in Hxi. eauto.
    Qed.

    Lemma K_std_seq_ksoundness A phi :
      A SE phi -> A KS phi.
    Proof.
      intros H % seq_ND. apply @ksoundness with (b := expl). 2: apply H. firstorder.
    Qed.
  End StandardCompleteness.

MP is required


  Section MPRequired.
    Variable C : stab_class.
    Hypothesis HC : map_closed C dnt.
    Variable K_completeness : forall T phi, C T -> kvalid_T kstandard T phi -> T SE phi.

    Lemma cend_dn T phi :
      C T -> ~ ~ T CE phi -> T CE phi.
    Proof.
      intros HT Hdn. apply DN_T, dnt_to_TCE. cbn. apply (@seq_ND_T _ _ (tmap dnt T) (¬ dnt phi))).
      apply K_completeness. 1: apply HC, HT. intros D M St u rho HT' v Hv Hn. contradict Hdn. intros Hphi % dnt_to_TIE.
      apply strong_ksoundness with (C0 := kstandard) in Hphi. apply (St v), Hn. 1: reflexivity.
      2: intros; apply kstandard_explodes. 1: apply (Hphi D M St v rho).
      intros psi Hpsi % HT'. apply (ksat_mon Hv Hpsi).
    Qed.
  End MPRequired.

End KripkeCompleteness.