(*
Autor(s):
Dominique Larchey-Wendling (1)
Andrej Dudenhefner (2)
Affiliation(s):
(1) LORIA -- CNRS
(2) Saarland University, Saarbrücken, Germany
*)
Autor(s):
Dominique Larchey-Wendling (1)
Andrej Dudenhefner (2)
Affiliation(s):
(1) LORIA -- CNRS
(2) Saarland University, Saarbrücken, Germany
*)
(*
Undecidability Result(s):
Diophantine Constraint Solvability (H10C_SAT)
Square Diophantine Constraint Solvability (H10SQC_SAT)
Uniform Diophantine Constraint Solvability (H10UC_SAT)
*)
Require Import Undecidability.Synthetic.Undecidability.
Require Import Undecidability.DiophantineConstraints.H10C.
From Undecidability.DiophantineConstraints.Reductions Require
FRACTRAN_to_H10C_SAT H10C_SAT_to_H10SQC_SAT H10SQC_SAT_to_H10UC_SAT.
From Undecidability.FRACTRAN Require Import FRACTRAN FRACTRAN_undec.
(* Undecidability of Diophantine Constraint Solvability *)
Theorem H10C_SAT_undec : undecidable H10C_SAT.
Proof.
apply (undecidability_from_reducibility FRACTRAN_undec).
apply (reduces_transitive FRACTRAN_DIO.FRACTRAN_HALTING_DIO_LOGIC_SAT).
apply (reduces_transitive FRACTRAN_DIO.DIO_LOGIC_ELEM_SAT).
exact FRACTRAN_to_H10C_SAT.DIO_ELEM_H10C_SAT.
Qed.
(* Undecidability of Square Diophantine Constraint Solvability *)
Theorem H10SQC_SAT_undec : undecidable H10SQC_SAT.
Proof.
apply (undecidability_from_reducibility H10C_SAT_undec).
exact H10C_SAT_to_H10SQC_SAT.reduction.
Qed.
(* Undecidability of Uniform Diophantine Constraint Solvability *)
Theorem H10UC_SAT_undec : undecidable H10UC_SAT.
Proof.
apply (undecidability_from_reducibility H10SQC_SAT_undec).
exact H10SQC_SAT_to_H10UC_SAT.reduction.
Qed.