(**************************************************************)
(*   Copyright Dominique Larchey-Wendling *                 *)
(*             Yannick Forster            +                 *)
(*                                                            *)
(*                             * Affiliation LORIA -- CNRS  *)
(*                             + Affiliation Saarland Univ. *)
(**************************************************************)
(*      This file is distributed under the terms of the       *)
(*         CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT          *)
(**************************************************************)

From Undecidability.Shared.Libs.DLW
  Require Import pos vec sss.

From Undecidability.MinskyMachines
  Require Import mm_defs.

From Undecidability.FRACTRAN
  Require Import FRACTRAN fractran_utils mm_fractran prime_seq.

Require Import Undecidability.Synthetic.Undecidability.

Set Implicit Arguments.

Section MM_HALTING_FRACTRAN_ALT_HALTING.

  Let f : MM_PROBLEM -> FRACTRAN_ALT_PROBLEM.
  Proof.
    intros (n & P & v); red.
    destruct (mm_fractran_n P) as (l & H1 & _).
    split.
    + exact l.
    + exists n; exact v.
  Defined.

  Theorem MM_FRACTRAN_ALT_HALTING : MM_HALTING FRACTRAN_ALT_HALTING.
  Proof.
    exists f; intros (n & P & v); simpl.
    destruct (mm_fractran_n P) as (l & H1 & H2); simpl; auto.
  Qed.

End MM_HALTING_FRACTRAN_ALT_HALTING.

Section FRACTRAN_ALT_HALTING_HALTING.

  Let f : FRACTRAN_ALT_PROBLEM -> FRACTRAN_PROBLEM.
  Proof.
    intros (l & n & v).
    exact (l,(ps 1 * exp 1 v)).
  Defined.

  Theorem FRACTRAN_ALT_HALTING_HALTING : FRACTRAN_ALT_HALTING FRACTRAN_HALTING.
  Proof.
    exists f; intros (n & P & v); simpl; tauto.
  Qed.

End FRACTRAN_ALT_HALTING_HALTING.

Corollary MM_FRACTRAN_HALTING : MM_HALTING FRACTRAN_HALTING.
Proof.
  eapply reduces_transitive. apply MM_FRACTRAN_ALT_HALTING.
  exact FRACTRAN_ALT_HALTING_HALTING.
Qed.

Section MM_HALTING_FRACTRAN_REG_HALTING.

  Let f : MM_PROBLEM -> FRACTRAN_REG_PROBLEM.
  Proof.
    intros (n & P & v); red.
    destruct (mm_fractran_n P) as (l & H1 & _).
    exists l, (ps 1 * exp 1 v); assumption.
  Defined.

  Theorem MM_FRACTRAN_REG_HALTING : MM_HALTING FRACTRAN_REG_HALTING.
  Proof.
    exists f; intros (n & P & v); simpl.
    destruct (mm_fractran_n P) as (l & H1 & H2); simpl; auto.
  Qed.

End MM_HALTING_FRACTRAN_REG_HALTING.

Check MM_FRACTRAN_REG_HALTING.

Section FRACTRAN_REG_FRACTRAN_HALTING.

  Let f : FRACTRAN_REG_PROBLEM -> FRACTRAN_PROBLEM.
  Proof.
    intros (l & v & _); exact (l,v).
  Defined.

  Theorem FRACTRAN_REG_FRACTRAN_HALTING : FRACTRAN_REG_HALTING FRACTRAN_HALTING.
  Proof.
    exists f; intros (n & P & v); simpl; tauto.
  Qed.

End FRACTRAN_REG_FRACTRAN_HALTING.

Check FRACTRAN_REG_FRACTRAN_HALTING.