Set Implicit Arguments.
Require Import List Lia.
From Undecidability.HOU Require Import std.std calculus.calculus unification.higher_order_unification unification.nth_order_unification.
Set Default Proof Using "Type".
(* * Enumerability *)
(* ** Terms, Types and Contexts *)
Section ListEnumerability.
Variable (X: Const).
Hypothesis (enumX: enumT X).
Fixpoint L_exp (n: nat) : list (exp X) :=
match n with
| 0 => nil
| S n => L_exp n
++ [var x | x ∈ L_T nat n]
++ [const c | c ∈ L_T X n]
++ [lambda s | s ∈ L_exp n]
++ [app s t | (s, t) ∈ (L_exp n × L_exp n)]
end.
Global Instance enumT_exp: enumT (exp X).
Proof using enumX.
exists L_exp.
- eauto.
- induction x as [y|c|s| s IH1 t IH2].
+ destruct (el_T y). exists (S x). cbn.
in_app 2. now in_collect y.
+ destruct (el_T c). exists (S x). cbn.
in_app 3. now in_collect c.
+ destruct IHs. exists (S x). cbn.
in_app 4. now in_collect s.
+ destruct IH1 as [x1], IH2 as [x2]. exists (S (x1 + x2)). cbn.
in_app 5. in_collect (s, t); eapply cum_ge'; eauto.
Qed.
Fixpoint L_type (n: nat) : list (type) :=
match n with
| 0 => nil
| S n => L_type n
++ [typevar x | x ∈ L_T nat n]
++ [A → B | (A, B) ∈ (L_type n × L_type n)]
end.
Global Instance enumT_type: enumT type.
Proof.
exists L_type.
- eauto.
- induction x as [beta|A IH1 B IH2].
+ destruct (el_T beta). exists (S x). cbn.
in_app 2. now in_collect beta.
+ destruct IH1 as [x1], IH2 as [x2]. exists (S (x1 + x2)). cbn.
in_app 5. in_collect (A, B); eapply cum_ge'; eauto.
Qed.
(* ** Typing Proofs *)
Fixpoint L_typingT Gamma s A n : list (Gamma ⊢ (s: exp X) : A) :=
match n with
| 0 => nil
| S n => L_typingT Gamma s A n ++
match s as s return list (Gamma ⊢ s : A) with
| var i => [typingVar Gamma i H where H: nth Gamma i = Some A]
| const c => [cast (typingConst Gamma c) H where H : ctype X c = A]
| lambda s => match A with
| typevar beta => nil
| A → B => [ typingLam H | H ∈ L_typingT (A :: Gamma) s B n]
end
| app s t =>
[typingApp H1 H2 | (H1, H2) ∈ (L_typingT Gamma s (A1 → A) n × L_typingT Gamma t A1 n) & A1 ∈ L_T n]
end
end.
Scheme typing_strong_ind := Induction for typing Sort Prop.
Global Instance enumT_typing Gamma (s: exp X) A: enumT (Gamma ⊢ s: A).
Proof.
exists (L_typingT Gamma s A).
- eauto.
- intros x.
induction x using typing_strong_ind.
+ exists 1. cbn. destruct dec; intuition. in_app 1. f_equal.
eapply Eqdep_dec.inj_pair2_eq_dec. eapply eq_dec. now destruct e, e0.
+ exists 1. cbn. destruct dec; intuition; cbn. left.
unfold cast; rewrite <-Eqdep_dec.eq_rect_eq_dec; eauto. decide equality. decide equality.
+ edestruct IHx as [m]. exists (S m); cbn.
in_app 2. now in_collect x.
+ edestruct IHx1 as [x1'], IHx2 as [x2'], (el_T A) as [x3'].
exists (S (x1' + x2' + x3')); cbn; in_app 3.
eapply in_flat_map. exists A. split.
2: in_collect (x1, x2).
all: eauto using cum_ge'.
Qed.
Fixpoint L_typing n : list (ctx * exp X * type) :=
match n with
| 0 => nil
| S n =>
L_typing n ++ [(Gamma, s, A) | (Gamma, s, A) ∈ (L_T n × L_T n × L_T n), |@L_T (Gamma ⊢ s : A) _ n| <> 0]
end.
Lemma enum_typing:
enum (fun '(Gamma, s, A) => Gamma ⊢ (s: exp X) : A) L_typing.
Proof with eauto using cum_ge'.
split; eauto.
intros [[Gamma s] A]; split.
- intros H. destruct (el_T Gamma) as [x1], (el_T s) as [x2], (el_T A) as [x3], (el_T H) as [x4]. exists (S (x1+x2+x3+x4)); cbn.
in_app 2. in_collect (Gamma, s, A).
1 - 3: eapply cum_ge'; eauto; lia.
eapply dec_decb. eapply cum_ge' with (m := x1 + x2 + x3 + x4) in H3; eauto.
destruct (@L_T (Gamma ⊢ s : A) _ _); cbn; eauto.
- intros [m H]; induction m in Gamma, s, A, H |-*; cbn in *. eauto.
inv_collect; injection H; intros; subst. eapply decb_dec in H1; intuition; subst.
destruct (@L_T (Gamma ⊢ s : A) _ m); intuition.
Qed.
Fixpoint L_uni (n: nat) : list (uni X) :=
match n with
| 0 => nil
| S n => L_uni n ++ flat_map (fun '(Gamma, s, t, A) => [@Build_uni _ Gamma s t A H1 H2 | (H1, H2) ∈ (L_T n × L_T n)])
[(Gamma, s, t, A) | (Gamma, s, t, A) ∈ (L_T n × L_T n × L_T n × L_T n)]
end.
Global Instance enumT_uni :
enumT (uni X).
Proof using enumX with eauto using cum_ge'.
exists L_uni.
- eauto.
- intros [Gamma s t A H1 H2].
destruct (el_T Gamma) as [x1], (el_T s) as [x2], (el_T t) as [x3], (el_T A) as [x4], (el_T H1) as [x5], (el_T H2) as [x6].
exists (S (x1 + x2 + x3 + x4 + x5 + x6)); cbn. in_app 2.
eapply in_flat_map. exists (Gamma, s, t, A). intuition.
+ in_collect (Gamma, s, t, A); eapply cum_ge'; eauto;lia.
+ in_collect (H1, H2)...
Qed.
Fixpoint L_subst (tau: fin -> exp X) (n: nat) : list (ctx * (fin -> exp X) * ctx) :=
match n with
| 0 => nil
| S n => L_subst tau n
++ [(Delta, tau, nil) | Delta ∈ L_T n]
++ [(Delta, s .: sigma, A :: Gamma) | ((Delta, sigma, Gamma), (Delta', s, A)) ∈ (L_subst (S >> tau) n × L_typing n), Delta = Delta']
end.
(* ** Substitutions *)
Lemma enum_substs tau:
enum (fun '(Delta, sigma, Gamma) => Delta ⊩ (sigma: fin -> exp X) : Gamma /\ forall x, x >= | Gamma | -> sigma x = tau x) (L_subst tau).
Proof.
destruct enum_typing as [_ E'].
split; eauto; intros [[Delta sigma] Gamma]; split.
- intros [H1 H2].
induction Gamma as [| A Gamma] in sigma, tau, H1, H2 |-*.
+ destruct (el_T Delta) as [x]; exists (S x); cbn.
in_app 2. in_collect Delta; eauto. repeat f_equal. symmetry; fext; intros; eapply H2; cbn; lia.
+ specialize (IHGamma (S >> tau) (S >> sigma) ); mp IHGamma; [| mp IHGamma]; eauto.
* intros ???. now eapply H1.
* intros; unfold funcomp; eapply H2; cbn; lia.
* assert (Delta ⊢ sigma 0 : A) by eauto.
specialize (E' (Delta, sigma 0, A)); cbn in E'. eapply E' in H as [x1].
destruct IHGamma as [x2]. exists (1 + x1 + x2); cbn.
in_app 3. in_collect ((Delta, S >> sigma, Gamma), (Delta, sigma 0, A)); eauto using cum_ge'.
repeat f_equal; fext; now intros [].
- intros [m H]; induction m in tau, sigma, Gamma, H |-*; cbn in H; eauto.
inv_collect; try injection H; intros; subst; eauto.
1 - 2: eapply IHm in H; intuition.
+ intros []?; cbn; discriminate.
+ eapply decb_dec in H1; subst. eapply typingSubst_cons.
eapply IHm; eauto. eapply (E' (c, e, t)). eauto.
+ eapply decb_dec in H2; subst. destruct x; cbn in H0; try lia; cbn.
edestruct IHm as [_ ->]; eauto; lia.
Qed.
Definition Uextended '(I, Delta, sigma) :=
Delta ⊩ sigma : @Gammaᵤ X I /\ sigma • sᵤ ≡ sigma • tᵤ /\ forall x, x >= |Gammaᵤ| -> sigma x = var x.
Fixpoint L_Uextended (n: nat) : list (uni X * ctx * (fin -> exp X)) :=
match n with
| 0 => nil
| S n => L_Uextended n ++ [(I, Delta, sigma) | (I, (Delta, sigma, Gamma)) ∈ (@L_T (uni X) _ n × L_subst var n ),
Gamma = Gammaᵤ /\ xi n (sigma • sᵤ) <> None /\ xi n (sigma • tᵤ) <> None /\ xi n (sigma • sᵤ) = xi n (sigma • tᵤ)]
end.
Lemma enum_unification' : enum Uextended L_Uextended.
Proof.
split; eauto.
intros [[I Delta] sigma]. unfold Uextended; cbn; split.
- intros (H3 & H4 & H5). destruct (el_T I) as [x1].
destruct (enum_substs var) as [_ E].
specialize (E (Delta, sigma, Gammaᵤ)); cbn in E; destruct E as [[x2 E] _]; [intuition|].
assert ({ s' | (sigma • sᵤ) ▷ s' }) as [s' E1] by
(eapply compute_evaluation_step, termination_steps, preservation_under_substitution; eauto using H1ᵤ).
assert ({ t' | (sigma • tᵤ) ▷ t' }) as [t' E2] by
(eapply compute_evaluation_step, termination_steps, preservation_under_substitution; eauto using H2ᵤ).
eapply xi_correct in E1 as E1'; destruct E1' as [x3];
eapply xi_correct in E2 as E2'; destruct E2' as [x4].
exists (S (x1 + x2 + x3 + x4)); cbn. in_app 2.
in_collect (I, (Delta, sigma, Gammaᵤ)).
+ eapply cum_ge'; eauto; lia.
+ eapply cum_ge'; eauto; lia.
+ eapply xi_monotone with (m := x1 + x2 + x3 + x4) in H0; [|lia].
eapply xi_monotone with (m := x1 + x2 + x3 + x4) in H1; [|lia].
eapply dec_decb; intuition; try congruence.
rewrite H0, H1. f_equal. destruct E1, E2.
rewrite H2, H7 in H4. eapply equiv_unique_normal_forms; eauto.
- intros [m H]; induction m; cbn in H; eauto.
eapply (inhabited_ind id).
inv_collect; injection H; intros; subst.
eapply decb_dec in H1. intuition; subst.
destruct (enum_substs var) as [_ H'].
specialize (H' (Delta, sigma, Gammaᵤ)) as [_ H']; cbn in H'.
mp H'; eauto. eapply inhabits; intuition.
destruct (xi m (sigma • sᵤ)) eqn: Hs; intuition.
destruct (xi m (sigma • tᵤ)) eqn: Ht; intuition.
injection H6 as <-.
eapply equiv_huet_backward with (v1 := e) (v2 := e); eauto.
all: eapply xi_correct; now (exists m).
Qed.
End ListEnumerability.
(* ** Higher-Order Unification *)
Theorem enumerable_unification (X: Const): enumerable__T X -> enumerable (U X).
Proof.
rewrite enum_enumT. intros [EX].
eapply enumerable_iff with (P := fun I => exists Delta sigma, Uextended (I, Delta, sigma)).
- intros [Gamma s t A ? ?]; unfold Uextended, U; cbn; split; intros [Delta [sigma []]].
exists Delta; exists sigma; intuition.
pose (tau x := if nth Gamma x then sigma x else var x). exists Delta; exists tau; intuition.
unfold tau; intros ?? H'; rewrite H'; eauto.
repeat rewrite subst_extensional with (sigma0 := tau) (tau0 := sigma); eauto.
1 - 2: intros ? H'; assert (x ∈ dom Gamma) as H1 by eauto using typing_variables; unfold tau; now domin H1.
unfold tau. now eapply nth_error_None in H1 as ->.
- eapply projection with (p := fun x: uni X * ctx => exists sigma, let (I, Delta) := x in Uextended (I, Delta, sigma)).
eapply projection with (p := @Uextended X).
eapply enumerable_enum; exists (@L_Uextended X EX); eapply enum_unification'.
Qed.
Require Import List Lia.
From Undecidability.HOU Require Import std.std calculus.calculus unification.higher_order_unification unification.nth_order_unification.
Set Default Proof Using "Type".
(* * Enumerability *)
(* ** Terms, Types and Contexts *)
Section ListEnumerability.
Variable (X: Const).
Hypothesis (enumX: enumT X).
Fixpoint L_exp (n: nat) : list (exp X) :=
match n with
| 0 => nil
| S n => L_exp n
++ [var x | x ∈ L_T nat n]
++ [const c | c ∈ L_T X n]
++ [lambda s | s ∈ L_exp n]
++ [app s t | (s, t) ∈ (L_exp n × L_exp n)]
end.
Global Instance enumT_exp: enumT (exp X).
Proof using enumX.
exists L_exp.
- eauto.
- induction x as [y|c|s| s IH1 t IH2].
+ destruct (el_T y). exists (S x). cbn.
in_app 2. now in_collect y.
+ destruct (el_T c). exists (S x). cbn.
in_app 3. now in_collect c.
+ destruct IHs. exists (S x). cbn.
in_app 4. now in_collect s.
+ destruct IH1 as [x1], IH2 as [x2]. exists (S (x1 + x2)). cbn.
in_app 5. in_collect (s, t); eapply cum_ge'; eauto.
Qed.
Fixpoint L_type (n: nat) : list (type) :=
match n with
| 0 => nil
| S n => L_type n
++ [typevar x | x ∈ L_T nat n]
++ [A → B | (A, B) ∈ (L_type n × L_type n)]
end.
Global Instance enumT_type: enumT type.
Proof.
exists L_type.
- eauto.
- induction x as [beta|A IH1 B IH2].
+ destruct (el_T beta). exists (S x). cbn.
in_app 2. now in_collect beta.
+ destruct IH1 as [x1], IH2 as [x2]. exists (S (x1 + x2)). cbn.
in_app 5. in_collect (A, B); eapply cum_ge'; eauto.
Qed.
(* ** Typing Proofs *)
Fixpoint L_typingT Gamma s A n : list (Gamma ⊢ (s: exp X) : A) :=
match n with
| 0 => nil
| S n => L_typingT Gamma s A n ++
match s as s return list (Gamma ⊢ s : A) with
| var i => [typingVar Gamma i H where H: nth Gamma i = Some A]
| const c => [cast (typingConst Gamma c) H where H : ctype X c = A]
| lambda s => match A with
| typevar beta => nil
| A → B => [ typingLam H | H ∈ L_typingT (A :: Gamma) s B n]
end
| app s t =>
[typingApp H1 H2 | (H1, H2) ∈ (L_typingT Gamma s (A1 → A) n × L_typingT Gamma t A1 n) & A1 ∈ L_T n]
end
end.
Scheme typing_strong_ind := Induction for typing Sort Prop.
Global Instance enumT_typing Gamma (s: exp X) A: enumT (Gamma ⊢ s: A).
Proof.
exists (L_typingT Gamma s A).
- eauto.
- intros x.
induction x using typing_strong_ind.
+ exists 1. cbn. destruct dec; intuition. in_app 1. f_equal.
eapply Eqdep_dec.inj_pair2_eq_dec. eapply eq_dec. now destruct e, e0.
+ exists 1. cbn. destruct dec; intuition; cbn. left.
unfold cast; rewrite <-Eqdep_dec.eq_rect_eq_dec; eauto. decide equality. decide equality.
+ edestruct IHx as [m]. exists (S m); cbn.
in_app 2. now in_collect x.
+ edestruct IHx1 as [x1'], IHx2 as [x2'], (el_T A) as [x3'].
exists (S (x1' + x2' + x3')); cbn; in_app 3.
eapply in_flat_map. exists A. split.
2: in_collect (x1, x2).
all: eauto using cum_ge'.
Qed.
Fixpoint L_typing n : list (ctx * exp X * type) :=
match n with
| 0 => nil
| S n =>
L_typing n ++ [(Gamma, s, A) | (Gamma, s, A) ∈ (L_T n × L_T n × L_T n), |@L_T (Gamma ⊢ s : A) _ n| <> 0]
end.
Lemma enum_typing:
enum (fun '(Gamma, s, A) => Gamma ⊢ (s: exp X) : A) L_typing.
Proof with eauto using cum_ge'.
split; eauto.
intros [[Gamma s] A]; split.
- intros H. destruct (el_T Gamma) as [x1], (el_T s) as [x2], (el_T A) as [x3], (el_T H) as [x4]. exists (S (x1+x2+x3+x4)); cbn.
in_app 2. in_collect (Gamma, s, A).
1 - 3: eapply cum_ge'; eauto; lia.
eapply dec_decb. eapply cum_ge' with (m := x1 + x2 + x3 + x4) in H3; eauto.
destruct (@L_T (Gamma ⊢ s : A) _ _); cbn; eauto.
- intros [m H]; induction m in Gamma, s, A, H |-*; cbn in *. eauto.
inv_collect; injection H; intros; subst. eapply decb_dec in H1; intuition; subst.
destruct (@L_T (Gamma ⊢ s : A) _ m); intuition.
Qed.
Fixpoint L_uni (n: nat) : list (uni X) :=
match n with
| 0 => nil
| S n => L_uni n ++ flat_map (fun '(Gamma, s, t, A) => [@Build_uni _ Gamma s t A H1 H2 | (H1, H2) ∈ (L_T n × L_T n)])
[(Gamma, s, t, A) | (Gamma, s, t, A) ∈ (L_T n × L_T n × L_T n × L_T n)]
end.
Global Instance enumT_uni :
enumT (uni X).
Proof using enumX with eauto using cum_ge'.
exists L_uni.
- eauto.
- intros [Gamma s t A H1 H2].
destruct (el_T Gamma) as [x1], (el_T s) as [x2], (el_T t) as [x3], (el_T A) as [x4], (el_T H1) as [x5], (el_T H2) as [x6].
exists (S (x1 + x2 + x3 + x4 + x5 + x6)); cbn. in_app 2.
eapply in_flat_map. exists (Gamma, s, t, A). intuition.
+ in_collect (Gamma, s, t, A); eapply cum_ge'; eauto;lia.
+ in_collect (H1, H2)...
Qed.
Fixpoint L_subst (tau: fin -> exp X) (n: nat) : list (ctx * (fin -> exp X) * ctx) :=
match n with
| 0 => nil
| S n => L_subst tau n
++ [(Delta, tau, nil) | Delta ∈ L_T n]
++ [(Delta, s .: sigma, A :: Gamma) | ((Delta, sigma, Gamma), (Delta', s, A)) ∈ (L_subst (S >> tau) n × L_typing n), Delta = Delta']
end.
(* ** Substitutions *)
Lemma enum_substs tau:
enum (fun '(Delta, sigma, Gamma) => Delta ⊩ (sigma: fin -> exp X) : Gamma /\ forall x, x >= | Gamma | -> sigma x = tau x) (L_subst tau).
Proof.
destruct enum_typing as [_ E'].
split; eauto; intros [[Delta sigma] Gamma]; split.
- intros [H1 H2].
induction Gamma as [| A Gamma] in sigma, tau, H1, H2 |-*.
+ destruct (el_T Delta) as [x]; exists (S x); cbn.
in_app 2. in_collect Delta; eauto. repeat f_equal. symmetry; fext; intros; eapply H2; cbn; lia.
+ specialize (IHGamma (S >> tau) (S >> sigma) ); mp IHGamma; [| mp IHGamma]; eauto.
* intros ???. now eapply H1.
* intros; unfold funcomp; eapply H2; cbn; lia.
* assert (Delta ⊢ sigma 0 : A) by eauto.
specialize (E' (Delta, sigma 0, A)); cbn in E'. eapply E' in H as [x1].
destruct IHGamma as [x2]. exists (1 + x1 + x2); cbn.
in_app 3. in_collect ((Delta, S >> sigma, Gamma), (Delta, sigma 0, A)); eauto using cum_ge'.
repeat f_equal; fext; now intros [].
- intros [m H]; induction m in tau, sigma, Gamma, H |-*; cbn in H; eauto.
inv_collect; try injection H; intros; subst; eauto.
1 - 2: eapply IHm in H; intuition.
+ intros []?; cbn; discriminate.
+ eapply decb_dec in H1; subst. eapply typingSubst_cons.
eapply IHm; eauto. eapply (E' (c, e, t)). eauto.
+ eapply decb_dec in H2; subst. destruct x; cbn in H0; try lia; cbn.
edestruct IHm as [_ ->]; eauto; lia.
Qed.
Definition Uextended '(I, Delta, sigma) :=
Delta ⊩ sigma : @Gammaᵤ X I /\ sigma • sᵤ ≡ sigma • tᵤ /\ forall x, x >= |Gammaᵤ| -> sigma x = var x.
Fixpoint L_Uextended (n: nat) : list (uni X * ctx * (fin -> exp X)) :=
match n with
| 0 => nil
| S n => L_Uextended n ++ [(I, Delta, sigma) | (I, (Delta, sigma, Gamma)) ∈ (@L_T (uni X) _ n × L_subst var n ),
Gamma = Gammaᵤ /\ xi n (sigma • sᵤ) <> None /\ xi n (sigma • tᵤ) <> None /\ xi n (sigma • sᵤ) = xi n (sigma • tᵤ)]
end.
Lemma enum_unification' : enum Uextended L_Uextended.
Proof.
split; eauto.
intros [[I Delta] sigma]. unfold Uextended; cbn; split.
- intros (H3 & H4 & H5). destruct (el_T I) as [x1].
destruct (enum_substs var) as [_ E].
specialize (E (Delta, sigma, Gammaᵤ)); cbn in E; destruct E as [[x2 E] _]; [intuition|].
assert ({ s' | (sigma • sᵤ) ▷ s' }) as [s' E1] by
(eapply compute_evaluation_step, termination_steps, preservation_under_substitution; eauto using H1ᵤ).
assert ({ t' | (sigma • tᵤ) ▷ t' }) as [t' E2] by
(eapply compute_evaluation_step, termination_steps, preservation_under_substitution; eauto using H2ᵤ).
eapply xi_correct in E1 as E1'; destruct E1' as [x3];
eapply xi_correct in E2 as E2'; destruct E2' as [x4].
exists (S (x1 + x2 + x3 + x4)); cbn. in_app 2.
in_collect (I, (Delta, sigma, Gammaᵤ)).
+ eapply cum_ge'; eauto; lia.
+ eapply cum_ge'; eauto; lia.
+ eapply xi_monotone with (m := x1 + x2 + x3 + x4) in H0; [|lia].
eapply xi_monotone with (m := x1 + x2 + x3 + x4) in H1; [|lia].
eapply dec_decb; intuition; try congruence.
rewrite H0, H1. f_equal. destruct E1, E2.
rewrite H2, H7 in H4. eapply equiv_unique_normal_forms; eauto.
- intros [m H]; induction m; cbn in H; eauto.
eapply (inhabited_ind id).
inv_collect; injection H; intros; subst.
eapply decb_dec in H1. intuition; subst.
destruct (enum_substs var) as [_ H'].
specialize (H' (Delta, sigma, Gammaᵤ)) as [_ H']; cbn in H'.
mp H'; eauto. eapply inhabits; intuition.
destruct (xi m (sigma • sᵤ)) eqn: Hs; intuition.
destruct (xi m (sigma • tᵤ)) eqn: Ht; intuition.
injection H6 as <-.
eapply equiv_huet_backward with (v1 := e) (v2 := e); eauto.
all: eapply xi_correct; now (exists m).
Qed.
End ListEnumerability.
(* ** Higher-Order Unification *)
Theorem enumerable_unification (X: Const): enumerable__T X -> enumerable (U X).
Proof.
rewrite enum_enumT. intros [EX].
eapply enumerable_iff with (P := fun I => exists Delta sigma, Uextended (I, Delta, sigma)).
- intros [Gamma s t A ? ?]; unfold Uextended, U; cbn; split; intros [Delta [sigma []]].
exists Delta; exists sigma; intuition.
pose (tau x := if nth Gamma x then sigma x else var x). exists Delta; exists tau; intuition.
unfold tau; intros ?? H'; rewrite H'; eauto.
repeat rewrite subst_extensional with (sigma0 := tau) (tau0 := sigma); eauto.
1 - 2: intros ? H'; assert (x ∈ dom Gamma) as H1 by eauto using typing_variables; unfold tau; now domin H1.
unfold tau. now eapply nth_error_None in H1 as ->.
- eapply projection with (p := fun x: uni X * ctx => exists sigma, let (I, Delta) := x in Uextended (I, Delta, sigma)).
eapply projection with (p := @Uextended X).
eapply enumerable_enum; exists (@L_Uextended X EX); eapply enum_unification'.
Qed.