(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import Undecidability.Synthetic.Undecidability.
Require Import Undecidability.TM.TM.
From Undecidability.PCP Require Import PCP.
Require Import Undecidability.PCP.Reductions.HaltTM_1_to_PCPb.
From Undecidability.MinskyMachines Require Import MM PCPb_to_MM.
Theorem HaltTM_to_MM_HALTS_ON_ZERO : HaltTM 1 ⪯ MM_HALTS_ON_ZERO.
Proof.
eapply reduces_transitive. exact HaltTM_1_to_PCPb.
apply PCPb_MM_HALTS_ON_ZERO.
Qed.
Theorem HaltTM_to_MM_HALTING : HaltTM 1 ⪯ MM_HALTING.
Proof.
eapply reduces_transitive. exact HaltTM_1_to_PCPb.
apply PCPb_MM_HALTING.
Qed.
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import Undecidability.Synthetic.Undecidability.
Require Import Undecidability.TM.TM.
From Undecidability.PCP Require Import PCP.
Require Import Undecidability.PCP.Reductions.HaltTM_1_to_PCPb.
From Undecidability.MinskyMachines Require Import MM PCPb_to_MM.
Theorem HaltTM_to_MM_HALTS_ON_ZERO : HaltTM 1 ⪯ MM_HALTS_ON_ZERO.
Proof.
eapply reduces_transitive. exact HaltTM_1_to_PCPb.
apply PCPb_MM_HALTS_ON_ZERO.
Qed.
Theorem HaltTM_to_MM_HALTING : HaltTM 1 ⪯ MM_HALTING.
Proof.
eapply reduces_transitive. exact HaltTM_1_to_PCPb.
apply PCPb_MM_HALTING.
Qed.