From Undecidability Require Import SeparationLogic.MSL.
From Undecidability Require Import Shared.ListAutomation.
Import ListAutomationNotations.
From Undecidability Require Import Shared.ListAutomation.
Import ListAutomationNotations.
Separation logic
Syntax
Inductive sp_form :=
| emp : sp_form (* heap emptiness *)
| sand : sp_form -> sp_form -> sp_form (* separating conjunction *)
| simp : sp_form -> sp_form -> sp_form (* separating implication *)
| pointer : sp_term -> sp_term -> sp_term -> sp_form (* strict binary pointer *)
| equality : sp_term -> sp_term -> sp_form
| bot : sp_form
| imp : sp_form -> sp_form -> sp_form
| and : sp_form -> sp_form -> sp_form
| or : sp_form -> sp_form -> sp_form
| all : sp_form -> sp_form
| ex : sp_form -> sp_form.
Semantics
Definition disjoint (h h' : heap) :=
~ exists l p p', (l, p) el h /\ (l, p') el h'.
Definition equiv (h h' : heap) :=
h <<= h' /\ h' <<= h.
Fixpoint sp_sat (s : stack) (h : heap) (P : sp_form) :=
match P with
| pointer E E1 E2 => exists l, sp_eval s E = Some l /\ h = [(l, (sp_eval s E1, sp_eval s E2))]
| equality E1 E2 => sp_eval s E1 = sp_eval s E2
| bot => False
| imp P1 P2 => sp_sat s h P1 -> sp_sat s h P2
| and P1 P2 => sp_sat s h P1 /\ sp_sat s h P2
| or P1 P2 => sp_sat s h P1 \/ sp_sat s h P2
| all P => forall v, sp_sat (update_stack s v) h P
| ex P => exists v, sp_sat (update_stack s v) h P
| emp => h = nil
| sand P1 P2 => exists h1 h2, equiv h (h1 ++ h2) /\ sp_sat s h1 P1 /\ sp_sat s h2 P2
| simp P1 P2 => forall h', disjoint h h' -> sp_sat s h' P1 -> sp_sat s (h ++ h') P2
end.
Satisfiability problem