(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Bool Eqdep_dec.
From Undecidability.Problems
Require Import Reduction.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list utils_nat finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations utils fol_ops.
Set Implicit Arguments.
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Bool Eqdep_dec.
From Undecidability.Problems
Require Import Reduction.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list utils_nat finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations utils fol_ops.
Set Implicit Arguments.
Definition decidable (P : Prop) := { P } + { ~ P }.
Fact decidable_bool_eq P : (decidable P -> { Q : bool | P <-> Q = true })
* ({ Q : bool | P <-> Q = true } -> decidable P).
Proof.
split.
+ intros H; exists (if H then true else false); destruct H; split; auto; discriminate.
+ intros (Q & HQ); destruct Q; [ left | right ]; rewrite HQ; auto.
Qed.
Fact reduction_decidable X Y (p : X -> Prop) (q : Y -> Prop) :
p ⪯ q -> (forall y, decidable (q y)) -> forall x, decidable (p x).
Proof.
intros (f & Hf) Hq x.
destruct (Hq (f x)); [ left | right ]; rewrite Hf; auto.
Qed.
Definition discrete X := forall x y : X, decidable (x=y).
Fact discrete_unit : discrete unit.
Proof. intros [] []; left; auto. Qed.
Local Ltac mydecideeq := unfold discrete, decidable; intro; decide equality.
Fact discrete_opt X : discrete X -> discrete (option X).
Proof. mydecideeq. Qed.
Fact discrete_sum X Y : discrete X -> discrete Y -> discrete (X+Y).
Proof. mydecideeq. Qed.
Fact discrete_prod X Y : discrete X -> discrete Y -> discrete (X*Y).
Proof. mydecideeq. Qed.
Fact discrete_list X : discrete X -> discrete (list X).
Proof. mydecideeq. Qed.
Fact discrete_pos n : discrete (pos n).
Proof. unfold discrete, decidable; apply pos_eq_dec. Qed.
Fact discrete_vec X n : discrete X -> discrete (vec X n).
Proof. unfold discrete, decidable; intros; apply vec_eq_dec; auto. Qed.
Hint Resolve discrete_unit discrete_sum discrete_prod
discrete_list discrete_pos discrete_vec : core.
Section decidable_fun_pos_bool.
Decidability of quantification over extensional and
decidable predicates of type (pos n -> bool) -> Prop
Variable (n : nat) (K : (pos n -> bool) -> Prop)
(HK : forall P Q, (forall x, P x = Q x) -> K P <-> K Q)
(D : forall P, decidable (K P)).
Let Dfa : decidable (forall v, K (vec_pos v)).
Proof.
apply (fol_quant_sem_dec fol_fa).
+ apply finite_t_vec, finite_t_bool.
+ intros v; apply D.
Qed.
Let Dex : decidable (exists v, K (vec_pos v)).
Proof.
apply (fol_quant_sem_dec fol_ex).
+ apply finite_t_vec, finite_t_bool.
+ intros v; apply D.
Qed.
Theorem fa_fun_pos_bool_decidable : decidable (forall P, K P).
Proof.
destruct Dfa as [ H | H ].
+ left.
intros P; generalize (H (vec_set_pos P)).
apply HK; intro; rew vec.
+ right; contradict H.
intro; apply H.
Qed.
Theorem ex_fun_pos_bool_decidable : decidable (exists P, K P).
Proof.
destruct Dex as [ H | H ].
+ left.
destruct H as (v & Hv).
exists (vec_pos v); auto.
+ right; contradict H.
destruct H as (P & HP).
exists (vec_set_pos P).
revert HP; apply HK.
intro; rew vec.
Qed.
End decidable_fun_pos_bool.
Section decidable_fun_finite_bool.
Decidability of quantification over extensional and decidable
predicates of type (X -> bool) -> Prop when
X is a finite and discrete type
Variable (X : Type) (H1 : finite_t X) (H2 : discrete X)
(K : (X -> bool) -> Prop)
(HK : forall P Q, (forall x, P x = Q x) -> K P <-> K Q)
(Dec : forall P, decidable (K P)).
Let D : { n : nat & bij_t X (pos n) }.
Proof.
apply finite_t_discrete_bij_t_pos; auto.
Qed.
Let n := projT1 D.
Let i : X -> pos n := projT1 (projT2 D).
Let j : pos n -> X := proj1_sig (projT2 (projT2 D)).
Let Hji : forall x, j (i x) = x.
Proof. apply (proj2_sig (projT2 (projT2 D))). Qed.
Let Hij : forall y, i (j y) = y.
Proof. apply (proj2_sig (projT2 (projT2 D))). Qed.
Let T P := K (fun p => P (i p)).
Let T_ext P Q : (forall x, P x = Q x) -> T P <-> T Q.
Proof. intros H; apply HK; intro; apply H. Qed.
Let T_dec P : decidable (T P).
Proof. apply Dec. Qed.
Theorem fa_fun_bool_decidable : decidable (forall P, K P).
Proof.
assert (H : decidable (forall P, T P)).
{ apply fa_fun_pos_bool_decidable; auto. }
destruct H as [ H | H ]; [ left | right ].
+ intros P.
generalize (H (fun p => P (j p))).
apply HK; intro; rewrite Hji; auto.
+ contradict H; intros P; apply H.
Qed.
Theorem ex_fun_bool_decidable : decidable (exists P, K P).
Proof.
assert (H : decidable (exists P, T P)).
{ apply ex_fun_pos_bool_decidable; auto. }
destruct H as [ H | H ]; [ left | right ].
+ destruct H as (P & H).
exists (fun x => P (i x)); auto.
+ contradict H.
destruct H as (P & H).
exists (fun p => P (j p)).
revert H; apply HK.
intro; rewrite Hji; auto.
Qed.
End decidable_fun_finite_bool.
Section decidable_upto.
decidability of existential quantification
for P : X -> Prop when X is finite upto some
binary relation R which is a morphism for P
Variable (X : Type) (R : X -> X -> Prop)
(P : X -> Prop) (HP : forall x, decidable (P x))
(HR : forall x y, R x y -> P x <-> P y).
Theorem decidable_list_upto_fa l :
(forall x, exists y, In y l /\ R x y)
-> decidable (forall x, P x).
Proof.
intros Hl.
destruct list_dec with (P := fun x => ~ P x) (Q := P) (l := l)
as [ (x & H1 & H2) | H ].
+ intros x; generalize (HP x); unfold decidable; tauto.
+ right; contradict H2; auto.
+ left; intros x.
destruct (Hl x) as (y & H1 & H2).
generalize (H _ H1); apply (HR H2).
Qed.
Theorem decidable_list_upto_ex l :
(forall x, exists y, In y l /\ R x y)
-> decidable (exists x, P x).
Proof.
intros Hl.
destruct list_dec with (1 := HP) (l := l)
as [ (x & H1 & H2) | H ].
+ left; exists x; auto.
+ right; intros (x & Hx).
destruct (Hl x) as (y & H1 & H2).
apply (H _ H1).
revert Hx; apply (HR H2).
Qed.
End decidable_upto.
Definition fun_ext X Y (f g : X -> Y) := forall x, f x = g x.
Definition prop_ext X (f g : X -> Prop) := forall x, f x <-> g x.
Section fun_pos_finite_t_upto.
If X is finite then pos n -> X is finite upto
extensional equality
Variable (X : Type) (HX : finite_t X).
Theorem fun_pos_finite_t_upto n : finite_t_upto (pos n -> X) (@fun_ext _ _).
Proof.
assert (H : finite_t (vec X n)).
{ apply finite_t_vec; auto. }
destruct H as (l & Hl).
exists (map (@vec_pos _ _) l).
intros f.
exists (vec_pos (vec_set_pos f)); split.
+ apply in_map_iff; exists (vec_set_pos f); auto.
+ intros p; rew vec.
Qed.
End fun_pos_finite_t_upto.
Section fun_finite_t_upto.
If X is finite and discrete and Y is finite that
X -> Y is finite upto extensional equality
Variable (X : Type) (HX1 : finite_t X) (HX2 : discrete X)
(Y : Type) (HY : finite_t Y).
Let D : { n : nat & bij_t X (pos n) }.
Proof.
apply finite_t_discrete_bij_t_pos; auto.
Qed.
Theorem fun_finite_t_upto : finite_t_upto (X -> Y) (@fun_ext _ _).
Proof.
destruct finite_t_discrete_bij_t_pos with X
as (n & i & j & Hji & Hij); auto.
destruct fun_pos_finite_t_upto with Y n
as (l & Hl); auto.
exists (map (fun f x => f (i x)) l).
intros f.
destruct (Hl (fun p => f (j p))) as (g & H1 & H2).
exists (fun x => g (i x)); split.
+ apply in_map_iff; exists g; auto.
+ intros x.
red in H2.
rewrite <- (Hji x) at 1; auto.
Qed.
End fun_finite_t_upto.
Section dec_pred_finite_t_upto.
If X is finite and discrete then decidable
predicates of type X -> Prop are finitely
many upto extensional equivalence
Variable (X : Type) (HX1 : finite_t X) (HX2 : discrete X).
Hint Resolve finite_t_bool : core.
Let bool_prop (f : X -> bool) : { p : X -> Prop & forall x, decidable (p x) }.
Proof.
exists (fun x => f x = true).
intro; apply bool_dec.
Defined.
Theorem pred_finite_t_upto : finite_t_upto { p : X -> Prop & forall x, decidable (p x) }
(fun p q => prop_ext (projT1 p) (projT1 q)).
Proof.
destruct fun_finite_t_upto with X bool as (l & Hl); auto.
exists (map bool_prop l).
intros (p & Hp).
destruct (Hl (fun x => if Hp x then true else false)) as (f & H1 & H2).
exists (bool_prop f); split.
+ apply in_map_iff; exists f; auto.
+ simpl; intros x; red in H2.
rewrite <- H2.
destruct (Hp x); split; auto; discriminate.
Qed.
End dec_pred_finite_t_upto.
Section finite_t_valuations.
For a given list of variables ln : list nat, and X a finite,
discrete and inhabited type, there are finitely many
valuations of type nat -> X, upto to equality over ln
Variable (X : Type)
(HX1 : finite_t X)
(HX2 : discrete X) (x : X).
Implicit Type (ln : list nat).
Let R ln (f g : nat -> X) := forall n, In n ln -> f n = g n.
Let combine (n : nat) : (X * (nat -> X)) -> nat -> X.
Proof.
intros (x', f) m.
destruct (eq_nat_dec n m).
+ exact x'.
+ apply (f m).
Defined.
Theorem finite_t_valuations ln : finite_t_upto _ (R ln).
Proof.
induction ln as [ | n ln IH ].
+ exists ((fun _ => x)::nil).
intros f; exists (fun _ => x); split; simpl; auto.
intros ? [].
+ destruct HX1 as (l & Hl).
destruct IH as (m & Hm).
exists (map (combine n) (list_prod l m)).
intros f.
destruct (Hm f) as (g & H1 & H2).
exists (combine n (f n,g)); split.
* apply in_map_iff; exists (f n,g); split; auto.
apply list_prod_spec; auto.
* intros n' [ <- | Hn' ].
- unfold combine.
destruct (eq_nat_dec n n) as [ | [] ]; auto.
- unfold combine.
destruct (eq_nat_dec n n') as [ E | D ]; auto.
Qed.
End finite_t_valuations.
Section finite_t_model.
For a given list of symbols ls : list syms, where syms is
a discrete type, and a type X, finite and discrete,
and a type Y, finite and inhabited,
there are finitely many valuations of type
forall s, vec X (ar s) -> Y,
upto to extensional equality over the list ls
Variable (syms : Type) (ar : syms -> nat) (Hsyms : discrete syms)
(X : Type) (HX1 : finite_t X) (HX2 : discrete X)
(Y : Type) (HY : finite_t Y) (y : Y).
Implicit Type (ls : list syms).
(* Extensionnal equality over ls *)
Let funs := forall s, vec X (ar s) -> Y.
Let R ls (s1 s2 : funs) :=
forall s, In s ls -> forall v, @s1 s v = s2 s v.
Hint Resolve finite_t_vec vec_eq_dec : core.
Let fun_combine s (f : vec X (ar s) -> Y) (g : funs) : funs.
Proof.
intros s'.
destruct (Hsyms s s').
+ subst s; exact f.
+ apply g.
Defined.
Theorem finite_t_model ls : finite_t_upto funs (R ls).
Proof.
induction ls as [ | s ls IH ].
+ exists ((fun _ _ => y) :: nil).
intros f; exists (fun _ _ => y); split; simpl; auto.
intros ? [].
+ destruct IH as (m & Hm).
destruct fun_finite_t_upto with (vec X (ar s)) Y
as (l & Hl); auto.
exists (map (fun p => fun_combine (fst p) (snd p)) (list_prod l m)).
intros f.
destruct (Hl (f s)) as (f' & H1 & H2).
destruct (Hm f) as (g & H3 & H4).
exists (fun_combine f' g); split.
* apply in_map_iff; exists (f',g); split; auto.
apply list_prod_spec; simpl; auto.
* intros s' [ <- | Hs ] v.
- red in H2; rewrite H2.
unfold fun_combine.
destruct (Hsyms s s) as [ E | [] ]; auto.
rewrite (UIP_dec Hsyms E eq_refl); auto.
- unfold fun_combine.
destruct (Hsyms s s') as [ E | D ].
++ subst; cbn; apply H2.
++ apply H4; auto.
Qed.
End finite_t_model.