(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Lia Eqdep_dec Bool.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations decidable fol_ops membership hfs.
Set Implicit Arguments.
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List Arith Lia Eqdep_dec Bool.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations decidable fol_ops membership hfs.
Set Implicit Arguments.
This discussion briefly describes how we encode finite and discrete
model X with a computable n-ary relation R into an hereditary finite
set (hfs) with to elements l and r, l representing the points in X
and r representing the n-tuples in R.
Because X is finite and discrete, one can compute a bijection X <~> pos n
where n is the cardinal of X. Hence we assume that X = pos n and the
ternary relation is R : pos n -> pos n -> pos n -> Prop
1) We find a transitive hfs l such that pos n bijects with the elements
of l (transitive means ∀x, x∈l -> x⊆l). Hence
pos n <-> { x | x ∈ l }
For this, we use the encoding of natural numbers into sets,
ie 0 := ø and 1+i := {i} U i and choose l to be the encoding
of n (the cardinal of X=pos n above).
Notice that since l is transitive then so is P(l) (powerset)
and hence P^i(l) for any i.
2) forall x,y ∈ l, both {x} and {x,y} belong to P(l)
hence (x,y) = ,{x,y} ∈ P(P(l))=P^2(l)
3) P^1(l) = P(l) contains the empty set
4) Hence P^(2n+1)(l) contains all n-tuples build from the elements of l
by induction on n
5) So we can encode R as hfs r ∈ p := P^(2n+2)(l) = P(P^(2n+1)(l)) and
p serves as our model, ie
Y := { x : hfs | x ∈b p }
where x ∈b p is the Boolean encoding of x ∈ p to ensure
uniqueness of witnesses/proofs.
6) In the logic, we replace any
R v by v ∈ r
encoded according to the above description.
We have computed the transitive closure, spec'ed and proved finite
Variable (X : Type) (Xfin : finite_t X) (Xdiscr : discrete X) (x0 : X) (nt : nat).
Infix "∈" := hfs_mem.
Notation "x ⊆ y" := (forall u, u ∈ x -> u ∈ y).
Notation "⟬ x , y ⟭" := (hfs_opair x y).
Let X_surj_hfs : { l : hfs & { f : hfs -> X &
{ g : X -> hfs |
hfs_transitive l
/\ hfs_empty ∈ l
/\ (forall p, g p ∈ l)
/\ (forall x, x ∈ l -> exists p, x = g p)
/\ (forall p, f (g p) = p) } } }.
Proof.
destruct (finite_t_discrete_bij_t_pos Xfin)
as ([ | n ] & Hn); auto.
1: { exfalso; destruct Hn as (f & g & H1 & H2).
generalize (f x0); intro p; invert pos p. }
destruct Hn as (f & g & H1 & H2).
destruct (hfs_pos_n_transitive n)
as (l & g' & f' & G1 & G0 & G2 & G3 & G4).
exists l, (fun x => g (g' x)), (fun x => f' (f x)); msplit 4; auto.
+ intros x Hx.
destruct (G3 x Hx) as (p & Hp).
exists (g p); rewrite H2; auto.
+ intros p; rewrite G4; auto.
Qed.
First a surjective map from some transitive set l to X
Let l := projT1 X_surj_hfs.
Let s := projT1 (projT2 X_surj_hfs).
Let i := proj1_sig (projT2 (projT2 (X_surj_hfs))).
Let Hl : hfs_transitive l.
Proof. apply (proj2_sig (projT2 (projT2 (X_surj_hfs)))). Qed.
Let Hempty : hfs_empty ∈ l.
Proof. apply (proj2_sig (projT2 (projT2 (X_surj_hfs)))). Qed.
Let Hs : forall x, s (i x) = x.
Proof. apply (proj2_sig (projT2 (projT2 (X_surj_hfs)))). Qed.
Let Hi : forall x, i x ∈ l.
Proof. apply (proj2_sig (projT2 (projT2 (X_surj_hfs)))). Qed.
Let Hi' : forall s, s ∈ l -> exists x, s = i x.
Proof. apply (proj2_sig (projT2 (projT2 (X_surj_hfs)))). Qed.
Now we build P^5 l that contains all the set of triples of l
Let p := iter hfs_pow l (1+(2*nt)).
Let Hp1 : hfs_transitive p.
Proof. apply hfs_iter_pow_trans; auto. Qed.
Let Hp2 : l ∈ p.
Proof.
apply hfs_iter_pow_le with (n := 1); simpl; auto; try lia.
apply hfs_pow_spec; auto.
Qed.
Let Hp5 n v : (forall p, vec_pos v p ∈ l) -> @hfs_tuple n v ∈ iter hfs_pow l (2*n).
Proof. apply hfs_tuple_pow; auto. Qed.
Let Hp6 n v : n <= nt -> (forall p, vec_pos v p ∈ l) -> @hfs_tuple n v ∈ p.
Proof.
intros L H; apply Hp5 in H.
revert H; apply hfs_iter_pow_le; try lia; auto.
Qed.
Variable (R : vec X nt -> Prop).
Hypothesis HR : forall v, { R v } + { ~ R v }.
Hint Resolve finite_t_prod hfs_mem_fin_t : core.
We encode R as a subset of tuples of elements of l in p
Let encode_R : { r | r ∈ p
/\ (forall v, @hfs_tuple nt v ∈ r -> forall q, vec_pos v q ∈ l)
/\ forall v, R v <-> hfs_tuple (vec_map i v) ∈ r }.
Proof.
set (P v := R (vec_map s v) /\ forall q, vec_pos v q ∈ l).
set (f := @hfs_tuple nt).
destruct hfs_comprehension with (P := P) (f := f) as (r & Hr).
+ apply fin_t_dec.
* intros; apply HR.
* apply fin_t_vec with (P := fun t => t ∈ l).
apply hfs_mem_fin_t.
+ exists r; msplit 2.
* unfold p; rewrite plus_comm, iter_plus with (b := 1).
apply hfs_pow_spec; intros x; rewrite Hr.
intros (v & H1 & <-).
apply Hp5, H1.
* unfold f; intros v.
rewrite Hr.
intros (w & H1 & H2).
apply hfs_tuple_spec in H2; subst w.
apply H1.
* intros v.
rewrite Hr.
split.
- exists (vec_map i v); split; auto.
split; auto.
++ rewrite vec_map_map.
revert H; apply fol_equiv_ext.
f_equal; apply vec_pos_ext; intro; rew vec.
++ intro; rew vec.
- intros (w & (H1 & _) & H2).
apply hfs_tuple_spec in H2.
revert H1; subst w; apply fol_equiv_ext.
f_equal; apply vec_pos_ext; intro; rew vec.
Qed.
Let r := proj1_sig encode_R.
Let Hr1 : r ∈ p.
Proof. apply (proj2_sig encode_R). Qed.
Let Hr2 v : @hfs_tuple nt v ∈ r -> forall q, vec_pos v q ∈ l.
Proof. apply (proj2_sig encode_R). Qed.
Let Hr3 v : R v <-> hfs_tuple (vec_map i v) ∈ r.
Proof. apply (proj2_sig encode_R). Qed.
The Boolean encoding of x ∈ p
Let p_bool x := if hfs_mem_dec x p then true else false.
Let p_bool_spec x : x ∈ p <-> p_bool x = true.
Proof.
unfold p_bool.
destruct (hfs_mem_dec x p); split; try tauto; discriminate.
Qed.
Let Y := sig (fun x => p_bool x = true).
Let eqY : forall x y : Y, proj1_sig x = proj1_sig y -> x = y.
Proof.
intros (x & Hx) (y & Hy); simpl.
intros; subst; f_equal; apply UIP_dec, bool_dec.
Qed.
Let HY : finite_t Y.
Proof.
apply fin_t_finite_t.
+ intros; apply UIP_dec, bool_dec.
+ generalize (hfs_mem_fin_t p); apply fin_t_equiv.
intros x; auto.
Qed.
Let discrY : discrete Y.
Proof.
intros (x & Hx) (y & Hy).
destruct (hfs_eq_dec x y) as [ -> | D ].
+ left; f_equal; apply UIP_dec, bool_dec.
+ right; contradict D; inversion D; auto.
Qed.
Let mem (x y : Y) := proj1_sig x ∈ proj1_sig y.
Let mem_dec : forall x y, { mem x y } + { ~ mem x y }.
Proof.
intros (a & ?) (b & ?); unfold mem; simpl; apply hfs_mem_dec.
Qed.
Let yl : Y. Proof. exists l; apply p_bool_spec, Hp2. Defined.
Let yr : Y. Proof. exists r; apply p_bool_spec, Hr1. Defined.
Membership equivalence is identity in the model
Let is_equiv : forall x y, mb_equiv mem x y <-> proj1_sig x = proj1_sig y.
Proof.
intros (x & Hx) (y & Hy); simpl.
unfold mb_equiv, mem; simpl; split.
2: intros []; tauto.
intros H.
apply hfs_mem_ext.
intros z; split; intros Hz.
* apply p_bool_spec in Hx.
generalize (Hp1 Hz Hx).
rewrite p_bool_spec; intros H'.
apply (H (exist _ z H')); auto.
* apply p_bool_spec in Hy.
generalize (Hp1 Hz Hy).
rewrite p_bool_spec; intros H'.
apply (H (exist _ z H')); auto.
Qed.
Let is_pair : forall x y k, mb_is_pair mem k x y
<-> proj1_sig k = hfs_pair (proj1_sig x) (proj1_sig y).
Proof.
intros (x & Hx) (y & Hy) (k & Hk); simpl.
unfold mb_is_pair; simpl; rewrite hfs_mem_ext.
generalize Hx Hy Hk; revert Hx Hy Hk.
do 3 rewrite <- p_bool_spec at 1.
intros Hx' Hy' Hk' Hx Hy Hk.
split.
+ intros H a; split; rewrite hfs_pair_spec; [ intros Ha | intros [ Ha | Ha ] ].
* generalize (Hp1 Ha Hk'); rewrite p_bool_spec; intros Ha'.
specialize (H (exist _ a Ha')); simpl in H.
repeat rewrite is_equiv in H; apply H; auto.
* subst; apply (H (exist _ x Hx)); repeat rewrite is_equiv; simpl; auto.
* subst; apply (H (exist _ y Hy)); repeat rewrite is_equiv; simpl; auto.
+ intros H (a & Ha); repeat rewrite is_equiv; simpl; rewrite <- hfs_pair_spec.
apply H.
Qed.
Let is_opair : forall x y k, mb_is_opair mem k x y
<-> proj1_sig k = ⟬proj1_sig x,proj1_sig y⟭.
Proof.
intros (x & Hx) (y & Hy) (k & Hk); simpl.
unfold mb_is_opair; split.
+ intros ((a & Ha) & (b & Hb) & H); revert H.
repeat rewrite is_pair; simpl.
intros (-> & -> & ->); auto.
+ intros ->.
generalize Hx Hy Hk; revert Hx Hy Hk.
do 3 rewrite <- p_bool_spec at 1.
intros Hx' Hy' Hk' Hx Hy Hk.
apply hfs_trans_opair_inv in Hk'; auto.
do 2 rewrite p_bool_spec in Hk'.
destruct Hk' as (H1 & H2).
exists (exist _ (hfs_pair x x) H1).
exists (exist _ (hfs_pair x y) H2).
repeat rewrite is_pair; simpl; auto.
Qed.
Let is_tuple n : forall v t, @mb_is_tuple _ mem t n v
<-> proj1_sig t = hfs_tuple (vec_map (@proj1_sig _ _) v).
Proof.
induction n as [ | n IHn ]; intros v (t & Ht).
+ vec nil v; clear v; simpl; split.
* intros H; apply hfs_mem_ext.
intros z; split.
- intros Hz.
assert (Hz' : p_bool z = true).
{ apply p_bool_spec.
apply Hp1 with (1 := Hz), p_bool_spec; auto. }
destruct (H (exist _ z Hz')); auto.
- rewrite hfs_empty_spec; tauto.
* intros -> (z & ?); unfold mem; simpl.
rewrite hfs_empty_spec; tauto.
+ vec split v with x; simpl; split.
* intros (t' & H1 & H2).
rewrite IHn in H2; try lia.
rewrite <- H2.
apply is_opair with (k := exist _ t Ht); auto.
* intros ->.
assert (H1 : p_bool (hfs_tuple (vec_map (@proj1_sig _ _) v)) = true).
{ apply p_bool_spec.
apply p_bool_spec in Ht.
apply hfs_trans_opair_inv, proj2, hfs_trans_pair_inv in Ht; tauto. }
exists (exist _ (hfs_tuple (vec_map (@proj1_sig _ _) v)) H1); split.
- rewrite is_opair; simpl; auto.
- rewrite IHn; simpl; auto.
Qed.
Let has_tuples : mb_has_tuples mem yl nt.
Proof.
intros v Hv.
set (t := hfs_tuple (vec_map (proj1_sig (P:=fun x : hfs => p_bool x = true)) v)).
assert (H1 : p_bool t = true).
{ apply p_bool_spec, Hp6; auto; intro; rew vec; apply Hv. }
exists (exist _ t H1).
apply is_tuple; simpl; reflexivity.
Qed.
Let i' : X -> Y.
Proof.
intros x.
exists (i x).
apply p_bool_spec.
generalize (Hi x) Hp2; apply Hp1.
Defined.
Let Hi'' x : mem (i' x) yl.
Proof. unfold i', yl, mem; simpl; auto. Qed.
Let s' (y : Y) : X := s (proj1_sig y).
For finite and discrete type X, non empty (as witnessed by a given element)
equipped with a Boolean ternary relation R, one can compute a type Y, finite
and discrete, equipped with a Boolean binary membership predicate ∈ which is
extensional. Y is a finite (set like) model which contains two sets yl and
yr and there is a bijection between X and (the elements of) yl. All ordered
triples build from elements of yl exist in Y, and yr encodes R in the set
of (ordered) triples it contains.
Finally, membership equivalence (≈) is the same as identity (=) in Y.
Membership equivalence : x ≈ y := ∀z, z∈x <-> z∈y
Membership extensional : x ≈ y -> ∀z, x∈z -> y∈z
Triples are build the usual way (in set theory)
Non-emptyness is not really necessary but then bijection between X=ø and yl
has to be implemented with dependent functions, more cumbersome to work
with. And first order models can never be empty because one has to be able
to interpret variables. Maybe a discussion on the case of empty models
could be necessary, the logic been reduced to True/False in that case.
Any ∀ formula is True, any ∃ is False and no atomic formula can ever
be evaluated (because it contains terms that cannot be interpreted).
Only closed formula have a meaning in the empty model
- z ∈ {x,y} := z ≈ x \/ z ≈ y
- ordered pairs: (x,y) is ,{x,y}
- ordered triples: (x,y,z) is ((x,y),z)
Theorem reln_hfs : { Y : Type &
{ _ : finite_t Y &
{ _ : discrete Y &
{ mem : Y -> Y -> Prop &
{ _ : forall u v, { mem u v } + { ~ mem u v } &
{ yl : Y &
{ yr : Y &
{ i : X -> Y &
{ s : Y -> X &
mb_member_ext mem
/\ mb_has_tuples mem yl nt
/\ (forall x, mem (i x) yl)
/\ (forall y, mem y yl -> exists x, y = i x)
/\ (forall x, s (i x) = x)
/\ (forall v, R v <-> mb_is_tuple_in mem yr (vec_map i v))
/\ (forall x y, mb_equiv mem x y <-> x = y)
}}}}}}}}}.
Proof.
exists Y, HY, discrY, mem, mem_dec, yl, yr, i', s'.
msplit 6; auto.
+ intros (u & Hu) (v & Hv) (w & Hw); unfold mem; simpl.
unfold mb_equiv; simpl; intros H.
cut (u = v); [ intros []; auto | ].
apply hfs_mem_ext.
apply p_bool_spec in Hu.
apply p_bool_spec in Hv.
clear w Hw.
intros x; split; intros Hx.
* generalize (Hp1 Hx Hu); rewrite p_bool_spec; intros H'.
apply (H (exist _ x H')); auto.
* generalize (Hp1 Hx Hv); rewrite p_bool_spec; intros H'.
apply (H (exist _ x H')); auto.
+ intros y Hy; unfold i'.
destruct (Hi' Hy) as (x & Hx).
exists x; apply eqY; simpl; auto.
+ intros v; rewrite Hr3; split.
* intros Hv.
red.
assert (H1 : p_bool (hfs_tuple (vec_map i v)) = true).
{ apply p_bool_spec, Hp1 with (1 := Hv); auto. }
exists (exist _ (hfs_tuple (vec_map i v)) H1); split.
- apply is_tuple; simpl; rewrite vec_map_map; auto.
- unfold yr; red; simpl; auto.
* intros ((t & Ht) & H1 & H2).
rewrite is_tuple in H1.
simpl in H1, H2.
rewrite vec_map_map in H1; subst t.
apply H2.
+ intros x y; rewrite is_equiv; split; auto.
intros; subst; auto.
Qed.
End bt_model_n.