From Undecidability.Synthetic
Require Import Definitions Undecidability.
From Undecidability.FOL
Require Import Sets.binFST
Sets.binZF
Sets.Models.FST_model.
From Undecidability.FOL.Undecidability
Require Import Reductions.binZF_to_binFST FST_undec binZF_undec.
Theorem undecidable_entailment_binFST :
undecidable entailment_binFST.
Proof.
apply (undecidability_from_reducibility undecidable_entailment_binZF).
exists ZF_to_FST. intros phi. apply reduction_entailment.
Qed.
Theorem undecidable_deduction_binFST :
undecidable deduction_binFST.
Proof.
apply (undecidability_from_reducibility undecidable_deduction_binZF).
exists ZF_to_FST. intros phi. apply reduction_deduction.
Qed.
Require Import Definitions Undecidability.
From Undecidability.FOL
Require Import Sets.binFST
Sets.binZF
Sets.Models.FST_model.
From Undecidability.FOL.Undecidability
Require Import Reductions.binZF_to_binFST FST_undec binZF_undec.
Theorem undecidable_entailment_binFST :
undecidable entailment_binFST.
Proof.
apply (undecidability_from_reducibility undecidable_entailment_binZF).
exists ZF_to_FST. intros phi. apply reduction_entailment.
Qed.
Theorem undecidable_deduction_binFST :
undecidable deduction_binFST.
Proof.
apply (undecidability_from_reducibility undecidable_deduction_binZF).
exists ZF_to_FST. intros phi. apply reduction_deduction.
Qed.