Set Implicit Arguments.
Require Import List Lia Program.Program.
From Undecidability.HOU Require Import std.std axioms.
Require Import RelationClasses Morphisms Init.Wf Init.Nat Setoid.
From Undecidability.HOU Require Import calculus.calculus second_order.goldfarb.encoding.
Require Import FinFun Coq.Arith.Wf_nat.
Import ListNotations.
Set Default Proof Using "Type".
Section Multiplication.
Variable (n: nat).
Implicit Type (X Y: list (nat * nat)).
Lemma Cons_subst sigma s t:
sigma • (s ::: t) = (sigma • s) ::: (sigma • t).
Proof. reflexivity. Qed.
Hint Rewrite Cons_subst : asimpl.
Lemma Cons_injective s s' u u': s ::: u = s' ::: u' -> s = s' /\ u = u'.
Proof. injection 1; eauto. Qed.
Lemma Pair_subst sigma s t: sigma • ⟨s, t⟩ = ⟨sigma • s, sigma • t⟩.
Proof. reflexivity. Qed.
Hint Rewrite Pair_subst : asimpl.
Lemma Pair_injective s s' u u': ⟨s, u⟩ = ⟨s', u'⟩ -> s = s' /\ u = u'.
Proof. injection 1; eauto. Qed.
Notation r := (var 2).
Notation A := (var 1).
Notation B := (var 0).
Let σ p q := B .: A .: ⟨enc p A, enc q B⟩ ::: Nil .: (add 2) >> var.
Let τ := Succ B .: enc n A .: Nil .:((add 2) >> var).
Definition t k := ⟨enc (k * n) A, enc k B⟩.
Definition T k := lambda lambda lambda lin (tab t k) r.
Lemma T_subst m sigma: sigma • (T m) = T m.
Proof.
unfold T; cbn; asimpl. rewrite !map_id_list; eauto.
rewrite tab_map_nats.
intros; mapinj. unfold t; cbn; now asimpl.
Qed.
Lemma T_ren m delta: ren delta (T m) = T m.
Proof.
asimpl; now rewrite T_subst.
Qed.
Hint Rewrite T_subst T_ren : asimpl.
Section G_subst.
Lemma G_left_subst m p q: (T m) (⟨ enc p A, enc q B⟩ ::: Nil) A B ≡ σ p q • (lin (tab t m) r).
Proof.
rewrite <-T_ren with (delta := add 2).
unfold T. eapply equiv_join.
cbn. do 3 (dostep; cbn). unfold beta. rewrite rinstInst_exp, !compComp_exp. reflexivity.
eapply refl_star. eapply ext_exp.
intros [|[|[]]]; cbn; eauto. now asimpl.
Qed.
Lemma G_right_subst m: (T m) Nil (enc n A) (Succ B) ≡ τ • lin (tab t m) r.
Proof.
rewrite <-T_ren with (delta := add 2).
unfold T. eapply equiv_join.
cbn. do 3 (dostep; cbn). unfold beta. rewrite rinstInst_exp, !compComp_exp. reflexivity.
eapply refl_star. eapply ext_exp.
intros [|[|[]]]; cbn; eauto. now asimpl.
Qed.
End G_subst.
Section t_subst.
Lemma hat_t_sigma p q k: σ p q • t k = t k.
Proof. cbn; now asimpl. Qed.
Lemma hat_t_tau k: τ • t k = t (S k).
Proof.
cbn; asimpl; cbn; simplify.
rewrite <-!enc_app.
now replace (k * n + n) with (n + k * n) by lia.
Qed.
End t_subst.
Hint Rewrite hat_t_sigma hat_t_tau : asimpl.
Section G_reduce.
Lemma G_left_reduce m p q:
(T m) (⟨ enc p A, enc q B⟩ ::: Nil) A B ≡ lin (tab t m) (⟨ enc p A, enc q B⟩ ::: Nil).
Proof.
rewrite G_left_subst. asimpl. rewrite map_id_list; eauto.
rewrite tab_map_nats.
intros; mapinj. unfold t; cbn; now asimpl.
Qed.
Lemma G_right_reduce m:
(T m) Nil (enc n A) (Succ B) ≡ lin (tab (S >> t) m) Nil.
Proof.
rewrite G_right_subst. asimpl. eapply eq_equiv. f_equal.
rewrite tab_map. eapply tab_ext.
intros ?; unfold funcomp, t; cbn; asimpl. unfold Pair, τ; cbn.
f_equal. f_equal. rewrite <-enc_app. f_equal; lia.
now simplify.
Qed.
End G_reduce.
Definition Grel m p G :=
lambda lambda (ren (add 2) G) (⟨ enc p A, enc m B⟩ ::: Nil) A B ≡
lambda lambda ⟨ A, B ⟩ ::: (ren (add 2) G) Nil (enc n A) (Succ B).
Lemma G_forward m: Grel m (m * n) (T m).
Proof.
unfold Grel. asimpl. do 2 eapply equiv_lam_proper.
unfold Cons at 2. rewrite G_left_reduce, G_right_reduce.
rewrite <-lin_cons. change (⟨ A, B ⟩) with (t 0). rewrite <-tab_S.
change (_ ::: _) with (lin [t m] Nil). now rewrite <-lin_app.
Qed.
Lemma multiplication_lambdas M m p:
normal M -> Grel m p M -> (exists M', M = (lambda lambda lambda M') /\ σ p m • M' = t 0 ::: (τ • M')).
Proof.
unfold Grel, Pair, Cons. cbn. intros Nu EQ.
remember (fun m : nat => S (S m)) as delta. rename M into u.
assert (normal (ren delta u)) as N' by (subst; eapply normal_ren; eauto).
do 2 apply equiv_lam_elim in EQ.
destruct u as [| | u' | ]; unfold funcomp; cbn in EQ.
4: eapply head_atom in N'; eauto.
1, 2, 4: Injection EQ; Injection H; Discriminate.
rewrite stepBeta in EQ; eauto. asimpl in EQ.
rewrite stepBeta in EQ; eauto. asimpl in EQ.
destruct u' as [[]| | u' | ]; cbn in EQ.
1 - 3: Injection EQ; Injection H; Discriminate.
- do 2 (rewrite stepBeta in EQ; eauto; asimpl in EQ; cbn in EQ).
destruct u' as [[|[]] | | u' | u1 u2 ]; cbn in EQ.
1 - 4: Injection EQ; unfold funcomp in *; Discriminate.
+ exists u'. intuition. do 2 (rewrite stepBeta in EQ; eauto; asimpl in EQ; cbn in EQ).
repeat eapply normal_lam_elim in Nu.
eapply equiv_unique_normal_forms; [eauto | eauto |idtac..]. subst delta; exact EQ.
2: eapply normal_app_intro; cbn; intuition.
2: repeat eapply normal_app_intro; eauto.
all: eapply normal_subst; try eassumption.
all: intros [|[|[]]]; cbn; eauto 2.
all: unfold funcomp, Nil; (repeat eapply normal_app_intro); eauto 2.
destruct n; simplify; eauto.
+ exfalso. repeat eapply normal_lam_elim in Nu.
eapply head_atom in Nu as H'; eauto.
eapply atom_head_lifting
with (sigma := A .: g (g (enc p A) (enc m B)) (id Nil) .: delta >> var) in H' as H4.
2: intros [|[]]; cbn; eauto.
cbn in H4. Injection EQ. Injection H.
destruct u1 as [[|[]]|[]| |]; cbn in H1; try Injection EQ; try Discriminate.
- eapply normal_lam_elim in Nu.
eapply head_atom in Nu; eauto.
eapply atom_head_lifting with (sigma := g (g (enc p A) (enc m B)) Nil .: delta >> var) in Nu; cbn in Nu.
2: intros []; cbn; eauto.
Injection EQ. Injection H. Discriminate.
Qed.
Section InvertSubstitution.
Variable (p q: nat).
Lemma subst_var_a s':
σ p q • s' = A -> s' = A.
Proof.
intros H4. destruct s'; try discriminate. cbn in H4.
destruct f as [|[|[]]]; cbn in H4; try discriminate; eauto.
Qed.
Lemma subst_var_b s':
σ p q • s' = B -> s' = B.
Proof.
intros H4. destruct s'; try discriminate. cbn in H4.
destruct f as [|[|[]]]; cbn in H4; try discriminate; eauto.
Qed.
Lemma subst_enc k e u:
σ p q • e = enc k u -> exists e', e = enc k e' /\ σ p q • e' = u.
Proof using τ n.
induction k in e |-*; cbn.
- intros; eexists; intuition; eauto.
- intros. simplify in *.
destruct e as [ [| [| []]] | | | e1 e3 ]; try discriminate.
destruct e1 as [ [| [| []]] | | | e1 e2 ]; try discriminate.
destruct e1 as [ [| [| []]] | [] | | ]; try discriminate.
destruct e2 as [ [| [| []]] | [[]|] | | ]; try discriminate.
simplify in H.
injection H as H.
destruct (IHk _ H) as [e']; intuition; subst.
exists e'. simplify. intuition.
Qed.
Lemma subst_t e k:
σ p q • e = t k -> e = t k.
Proof.
unfold t; intros.
destruct e as [ [| [| []]] | | | e1 e3 ] ; try discriminate.
{ cbn in *. asimpl in H. cbn in *.
injection H as ?. destruct k; discriminate. }
destruct e1 as [ [| [| []]] | | | e1 e2 ]; try discriminate.
destruct e1 as [ [| [| []]] | [] | | ]; try discriminate.
cbn -[add] in *. f_equal; injection H as H H'.
asimpl in H. asimpl in H'. cbn in H, H'. unfold funcomp in H, H'.
eapply subst_enc in H as [? []]; eauto.
eapply subst_enc in H' as [? []]; eauto. subst.
eapply subst_var_a in H0. eapply subst_var_b in H2.
now subst.
Qed.
End InvertSubstitution.
Section RecoverStructure.
Lemma step_u u p q k:
σ p q • u = t k ::: (τ • u) ->
u = r \/ (exists u', u = t k ::: u').
Proof.
intros EQ. destruct u as [| | | t1 t3]; try discriminate; eauto.
- cbn in *. asimpl in EQ.
destruct f as [|[|[]]]; try discriminate. now left.
- destruct t1 as [[|[|[]]]| | | t1 t2]; cbn in *; try discriminate; eauto.
destruct t1 as [[|[|[]]]| [] | |]; cbn in *; try discriminate; eauto.
injection EQ as EQ1 EQ2. intros. asimpl in EQ1.
eapply subst_t in EQ1; subst; eauto.
right. now (exists t3).
Qed.
Fixpoint size_exp {Z} (s: exp Z) :=
match s with
| var _ => 0
| const c => 0
| app s t => S (size_exp s + size_exp t)
| lambda s => S (size_exp s)
end.
Lemma steps_u u p q k:
σ p q • u = t k ::: (τ • u) ->
exists l, u = lin (tab (fun i => t (i + k)) l) r.
Proof.
specialize (well_founded_ind (measure_wf lt_wf (@size_exp ag))) as ind.
revert k. induction u as [u IH] using ind; intros k EQ.
destruct (step_u _ _ _ EQ) as [H1|H1].
- subst. exists 0. reflexivity.
- destruct H1 as [u' H1]. rewrite H1 in EQ.
rewrite !Cons_subst in EQ. asimpl in EQ.
eapply Cons_injective in EQ as [_ EQ].
eapply IH in EQ as [l]; [|subst u; hnf; cbn; lia].
exists (S l). rewrite tab_S, H1, H.
simplify. unfold Cons. f_equal. f_equal. rewrite !tab_map_nats. eapply map_ext.
intros. f_equal; lia.
Qed.
End RecoverStructure.
Lemma G_backward_exists m p M: normal M -> Grel m p M -> exists l, M = T l.
Proof.
intros N [M' [-> [l ->] % steps_u]] % multiplication_lambdas; eauto.
exists l; erewrite tab_ext; now eauto.
Qed.
Lemma G_backward_equations m p l: Grel m p (T l) -> m = l /\ m * n = p.
Proof.
unfold Grel. rewrite <-G_forward.
rewrite !T_ren. rewrite !G_left_reduce.
intros H % equiv_lam_elim % equiv_lam_elim.
eapply equiv_unique_normal_forms in H; [|eauto| |].
eapply lin_injective in H as [_ H]; eauto.
eapply Cons_injective in H as [[H1 H2] % Pair_injective _].
eapply eq_equiv, enc_injective in H1; eauto.
eapply eq_equiv, enc_injective in H2; eauto.
intuition; subst; lia.
all: eapply lin_normal.
1, 3: rewrite tab_map_nats; intros; mapinj; unfold t; cbn.
all: repeat eapply normal_app_intro; eauto.
Qed.
Lemma G_iff m p G: normal G -> ((m * n = p /\ G = T m) <-> Grel m p G).
Proof.
intros N. split.
- intros [<- ->]. apply G_forward.
- intros H. specialize (G_backward_exists N H) as [l ->].
eapply G_backward_equations in H; intuition.
Qed.
End Multiplication.
Require Import List Lia Program.Program.
From Undecidability.HOU Require Import std.std axioms.
Require Import RelationClasses Morphisms Init.Wf Init.Nat Setoid.
From Undecidability.HOU Require Import calculus.calculus second_order.goldfarb.encoding.
Require Import FinFun Coq.Arith.Wf_nat.
Import ListNotations.
Set Default Proof Using "Type".
Section Multiplication.
Variable (n: nat).
Implicit Type (X Y: list (nat * nat)).
Lemma Cons_subst sigma s t:
sigma • (s ::: t) = (sigma • s) ::: (sigma • t).
Proof. reflexivity. Qed.
Hint Rewrite Cons_subst : asimpl.
Lemma Cons_injective s s' u u': s ::: u = s' ::: u' -> s = s' /\ u = u'.
Proof. injection 1; eauto. Qed.
Lemma Pair_subst sigma s t: sigma • ⟨s, t⟩ = ⟨sigma • s, sigma • t⟩.
Proof. reflexivity. Qed.
Hint Rewrite Pair_subst : asimpl.
Lemma Pair_injective s s' u u': ⟨s, u⟩ = ⟨s', u'⟩ -> s = s' /\ u = u'.
Proof. injection 1; eauto. Qed.
Notation r := (var 2).
Notation A := (var 1).
Notation B := (var 0).
Let σ p q := B .: A .: ⟨enc p A, enc q B⟩ ::: Nil .: (add 2) >> var.
Let τ := Succ B .: enc n A .: Nil .:((add 2) >> var).
Definition t k := ⟨enc (k * n) A, enc k B⟩.
Definition T k := lambda lambda lambda lin (tab t k) r.
Lemma T_subst m sigma: sigma • (T m) = T m.
Proof.
unfold T; cbn; asimpl. rewrite !map_id_list; eauto.
rewrite tab_map_nats.
intros; mapinj. unfold t; cbn; now asimpl.
Qed.
Lemma T_ren m delta: ren delta (T m) = T m.
Proof.
asimpl; now rewrite T_subst.
Qed.
Hint Rewrite T_subst T_ren : asimpl.
Section G_subst.
Lemma G_left_subst m p q: (T m) (⟨ enc p A, enc q B⟩ ::: Nil) A B ≡ σ p q • (lin (tab t m) r).
Proof.
rewrite <-T_ren with (delta := add 2).
unfold T. eapply equiv_join.
cbn. do 3 (dostep; cbn). unfold beta. rewrite rinstInst_exp, !compComp_exp. reflexivity.
eapply refl_star. eapply ext_exp.
intros [|[|[]]]; cbn; eauto. now asimpl.
Qed.
Lemma G_right_subst m: (T m) Nil (enc n A) (Succ B) ≡ τ • lin (tab t m) r.
Proof.
rewrite <-T_ren with (delta := add 2).
unfold T. eapply equiv_join.
cbn. do 3 (dostep; cbn). unfold beta. rewrite rinstInst_exp, !compComp_exp. reflexivity.
eapply refl_star. eapply ext_exp.
intros [|[|[]]]; cbn; eauto. now asimpl.
Qed.
End G_subst.
Section t_subst.
Lemma hat_t_sigma p q k: σ p q • t k = t k.
Proof. cbn; now asimpl. Qed.
Lemma hat_t_tau k: τ • t k = t (S k).
Proof.
cbn; asimpl; cbn; simplify.
rewrite <-!enc_app.
now replace (k * n + n) with (n + k * n) by lia.
Qed.
End t_subst.
Hint Rewrite hat_t_sigma hat_t_tau : asimpl.
Section G_reduce.
Lemma G_left_reduce m p q:
(T m) (⟨ enc p A, enc q B⟩ ::: Nil) A B ≡ lin (tab t m) (⟨ enc p A, enc q B⟩ ::: Nil).
Proof.
rewrite G_left_subst. asimpl. rewrite map_id_list; eauto.
rewrite tab_map_nats.
intros; mapinj. unfold t; cbn; now asimpl.
Qed.
Lemma G_right_reduce m:
(T m) Nil (enc n A) (Succ B) ≡ lin (tab (S >> t) m) Nil.
Proof.
rewrite G_right_subst. asimpl. eapply eq_equiv. f_equal.
rewrite tab_map. eapply tab_ext.
intros ?; unfold funcomp, t; cbn; asimpl. unfold Pair, τ; cbn.
f_equal. f_equal. rewrite <-enc_app. f_equal; lia.
now simplify.
Qed.
End G_reduce.
Definition Grel m p G :=
lambda lambda (ren (add 2) G) (⟨ enc p A, enc m B⟩ ::: Nil) A B ≡
lambda lambda ⟨ A, B ⟩ ::: (ren (add 2) G) Nil (enc n A) (Succ B).
Lemma G_forward m: Grel m (m * n) (T m).
Proof.
unfold Grel. asimpl. do 2 eapply equiv_lam_proper.
unfold Cons at 2. rewrite G_left_reduce, G_right_reduce.
rewrite <-lin_cons. change (⟨ A, B ⟩) with (t 0). rewrite <-tab_S.
change (_ ::: _) with (lin [t m] Nil). now rewrite <-lin_app.
Qed.
Lemma multiplication_lambdas M m p:
normal M -> Grel m p M -> (exists M', M = (lambda lambda lambda M') /\ σ p m • M' = t 0 ::: (τ • M')).
Proof.
unfold Grel, Pair, Cons. cbn. intros Nu EQ.
remember (fun m : nat => S (S m)) as delta. rename M into u.
assert (normal (ren delta u)) as N' by (subst; eapply normal_ren; eauto).
do 2 apply equiv_lam_elim in EQ.
destruct u as [| | u' | ]; unfold funcomp; cbn in EQ.
4: eapply head_atom in N'; eauto.
1, 2, 4: Injection EQ; Injection H; Discriminate.
rewrite stepBeta in EQ; eauto. asimpl in EQ.
rewrite stepBeta in EQ; eauto. asimpl in EQ.
destruct u' as [[]| | u' | ]; cbn in EQ.
1 - 3: Injection EQ; Injection H; Discriminate.
- do 2 (rewrite stepBeta in EQ; eauto; asimpl in EQ; cbn in EQ).
destruct u' as [[|[]] | | u' | u1 u2 ]; cbn in EQ.
1 - 4: Injection EQ; unfold funcomp in *; Discriminate.
+ exists u'. intuition. do 2 (rewrite stepBeta in EQ; eauto; asimpl in EQ; cbn in EQ).
repeat eapply normal_lam_elim in Nu.
eapply equiv_unique_normal_forms; [eauto | eauto |idtac..]. subst delta; exact EQ.
2: eapply normal_app_intro; cbn; intuition.
2: repeat eapply normal_app_intro; eauto.
all: eapply normal_subst; try eassumption.
all: intros [|[|[]]]; cbn; eauto 2.
all: unfold funcomp, Nil; (repeat eapply normal_app_intro); eauto 2.
destruct n; simplify; eauto.
+ exfalso. repeat eapply normal_lam_elim in Nu.
eapply head_atom in Nu as H'; eauto.
eapply atom_head_lifting
with (sigma := A .: g (g (enc p A) (enc m B)) (id Nil) .: delta >> var) in H' as H4.
2: intros [|[]]; cbn; eauto.
cbn in H4. Injection EQ. Injection H.
destruct u1 as [[|[]]|[]| |]; cbn in H1; try Injection EQ; try Discriminate.
- eapply normal_lam_elim in Nu.
eapply head_atom in Nu; eauto.
eapply atom_head_lifting with (sigma := g (g (enc p A) (enc m B)) Nil .: delta >> var) in Nu; cbn in Nu.
2: intros []; cbn; eauto.
Injection EQ. Injection H. Discriminate.
Qed.
Section InvertSubstitution.
Variable (p q: nat).
Lemma subst_var_a s':
σ p q • s' = A -> s' = A.
Proof.
intros H4. destruct s'; try discriminate. cbn in H4.
destruct f as [|[|[]]]; cbn in H4; try discriminate; eauto.
Qed.
Lemma subst_var_b s':
σ p q • s' = B -> s' = B.
Proof.
intros H4. destruct s'; try discriminate. cbn in H4.
destruct f as [|[|[]]]; cbn in H4; try discriminate; eauto.
Qed.
Lemma subst_enc k e u:
σ p q • e = enc k u -> exists e', e = enc k e' /\ σ p q • e' = u.
Proof using τ n.
induction k in e |-*; cbn.
- intros; eexists; intuition; eauto.
- intros. simplify in *.
destruct e as [ [| [| []]] | | | e1 e3 ]; try discriminate.
destruct e1 as [ [| [| []]] | | | e1 e2 ]; try discriminate.
destruct e1 as [ [| [| []]] | [] | | ]; try discriminate.
destruct e2 as [ [| [| []]] | [[]|] | | ]; try discriminate.
simplify in H.
injection H as H.
destruct (IHk _ H) as [e']; intuition; subst.
exists e'. simplify. intuition.
Qed.
Lemma subst_t e k:
σ p q • e = t k -> e = t k.
Proof.
unfold t; intros.
destruct e as [ [| [| []]] | | | e1 e3 ] ; try discriminate.
{ cbn in *. asimpl in H. cbn in *.
injection H as ?. destruct k; discriminate. }
destruct e1 as [ [| [| []]] | | | e1 e2 ]; try discriminate.
destruct e1 as [ [| [| []]] | [] | | ]; try discriminate.
cbn -[add] in *. f_equal; injection H as H H'.
asimpl in H. asimpl in H'. cbn in H, H'. unfold funcomp in H, H'.
eapply subst_enc in H as [? []]; eauto.
eapply subst_enc in H' as [? []]; eauto. subst.
eapply subst_var_a in H0. eapply subst_var_b in H2.
now subst.
Qed.
End InvertSubstitution.
Section RecoverStructure.
Lemma step_u u p q k:
σ p q • u = t k ::: (τ • u) ->
u = r \/ (exists u', u = t k ::: u').
Proof.
intros EQ. destruct u as [| | | t1 t3]; try discriminate; eauto.
- cbn in *. asimpl in EQ.
destruct f as [|[|[]]]; try discriminate. now left.
- destruct t1 as [[|[|[]]]| | | t1 t2]; cbn in *; try discriminate; eauto.
destruct t1 as [[|[|[]]]| [] | |]; cbn in *; try discriminate; eauto.
injection EQ as EQ1 EQ2. intros. asimpl in EQ1.
eapply subst_t in EQ1; subst; eauto.
right. now (exists t3).
Qed.
Fixpoint size_exp {Z} (s: exp Z) :=
match s with
| var _ => 0
| const c => 0
| app s t => S (size_exp s + size_exp t)
| lambda s => S (size_exp s)
end.
Lemma steps_u u p q k:
σ p q • u = t k ::: (τ • u) ->
exists l, u = lin (tab (fun i => t (i + k)) l) r.
Proof.
specialize (well_founded_ind (measure_wf lt_wf (@size_exp ag))) as ind.
revert k. induction u as [u IH] using ind; intros k EQ.
destruct (step_u _ _ _ EQ) as [H1|H1].
- subst. exists 0. reflexivity.
- destruct H1 as [u' H1]. rewrite H1 in EQ.
rewrite !Cons_subst in EQ. asimpl in EQ.
eapply Cons_injective in EQ as [_ EQ].
eapply IH in EQ as [l]; [|subst u; hnf; cbn; lia].
exists (S l). rewrite tab_S, H1, H.
simplify. unfold Cons. f_equal. f_equal. rewrite !tab_map_nats. eapply map_ext.
intros. f_equal; lia.
Qed.
End RecoverStructure.
Lemma G_backward_exists m p M: normal M -> Grel m p M -> exists l, M = T l.
Proof.
intros N [M' [-> [l ->] % steps_u]] % multiplication_lambdas; eauto.
exists l; erewrite tab_ext; now eauto.
Qed.
Lemma G_backward_equations m p l: Grel m p (T l) -> m = l /\ m * n = p.
Proof.
unfold Grel. rewrite <-G_forward.
rewrite !T_ren. rewrite !G_left_reduce.
intros H % equiv_lam_elim % equiv_lam_elim.
eapply equiv_unique_normal_forms in H; [|eauto| |].
eapply lin_injective in H as [_ H]; eauto.
eapply Cons_injective in H as [[H1 H2] % Pair_injective _].
eapply eq_equiv, enc_injective in H1; eauto.
eapply eq_equiv, enc_injective in H2; eauto.
intuition; subst; lia.
all: eapply lin_normal.
1, 3: rewrite tab_map_nats; intros; mapinj; unfold t; cbn.
all: repeat eapply normal_app_intro; eauto.
Qed.
Lemma G_iff m p G: normal G -> ((m * n = p /\ G = T m) <-> Grel m p G).
Proof.
intros N. split.
- intros [<- ->]. apply G_forward.
- intros H. specialize (G_backward_exists N H) as [l ->].
eapply G_backward_equations in H; intuition.
Qed.
End Multiplication.