Require Import List Lia.
Import ListNotations.
From Undecidability.HOU.calculus Require Import
prelim terms syntax semantics equivalence typing order evaluator.
Set Default Proof Using "Type".
Section UnificationDefinitions.
Context {X: Const}.
Class uni :=
{
Gammaᵤ : ctx;
sᵤ : exp X;
tᵤ : exp X;
Aᵤ : type;
H1ᵤ : Gammaᵤ ⊢ sᵤ : Aᵤ;
H2ᵤ : Gammaᵤ ⊢ tᵤ : Aᵤ
}.
Definition U (I: uni) :=
exists (Delta: ctx) (sigma: fin -> exp X), Delta ⊩ sigma : Gammaᵤ /\ sigma • sᵤ ≡ sigma • tᵤ.
End UnificationDefinitions.
Arguments uni _ : clear implicits.
Arguments U _ : clear implicits.
#[export] Hint Resolve H1ᵤ H2ᵤ : core.
Definition NU {X: Const} (I: uni X) :=
exists Delta sigma, Delta ⊩ sigma : Gammaᵤ /\ sigma • sᵤ ≡ sigma • tᵤ /\ forall x, normal (sigma x).
Section Normalisation.
Section SubstitutionTransformations.
Variable (X: Const) (n: nat) (s t: exp X) (A: type) (Gamma: ctx).
Hypothesis (Leq: 1 <= n).
Hypothesis (T1: Gamma ⊢(n) s : A) (T2: Gamma ⊢(n) t : A).
Implicit Types (Delta: ctx) (sigma : fin -> exp X).
Lemma normalise_subst Delta sigma:
Delta ⊩ sigma : Gamma ->
{ tau | (forall x, sigma x >* tau x) /\
(forall x, x ∈ dom Gamma -> normal (tau x)) /\ Delta ⊩ tau : Gamma}.
Proof.
intros T.
assert (forall x, x ∈ dom Gamma -> { A | nth Gamma x = Some A }) as I.
{ intros x H1. destruct nth eqn: ?; eauto.
exfalso. domin H1. congruence. }
exists (fun x => match x el dom Gamma with
| left H => eta (sigma x) (T _ _ (proj2_sig (I x H)))
| right _ => sigma x
end).
split; [| split].
1-2: intros x; destruct dec_in; intuition.
eapply eta_correct. eapply eta_normal.
intros x B H. destruct dec_in; intuition.
destruct I; cbn. generalize (T x x0 e).
rewrite H in e; injection e as ->.
eapply eta_typing.
Qed.
End SubstitutionTransformations.
Variable (X: Const).
Arguments sᵤ {_} _.
Arguments tᵤ {_} _.
Arguments Gammaᵤ {_} _.
Arguments Aᵤ {_} _.
Lemma U_NU I: U X I <-> NU I.
Proof.
split; intros (Delta & sigma & H1 & H2); [| exists Delta; exists sigma; intuition].
eapply normalise_subst in H1 as (tau & H5 & H6 & H7).
pose (theta x := if nth (Gammaᵤ I) x then tau x else var x).
exists Delta. exists theta. intuition.
+ intros ???; unfold theta; rewrite H; eapply H7; eauto.
+ rewrite subst_pointwise_equiv with (sigma := theta) (tau := sigma).
rewrite subst_pointwise_equiv with (sigma := theta) (tau := sigma); eauto.
all: intros ? H; eapply typing_variables in H; eauto; domin H.
all: unfold theta; now rewrite H, H5.
+ unfold theta; destruct nth eqn: ?; [|eauto].
domin Heqo; eauto.
Qed.
Lemma U_reduction (I I': uni X):
sᵤ I ≡ sᵤ I' -> tᵤ I ≡ tᵤ I' ->
Gammaᵤ I = Gammaᵤ I' -> Aᵤ I = Aᵤ I' ->
U X I -> U X I'.
Proof.
intros H1 H2 H3 H4; intros (Delta & sigma & T & N); exists Delta; exists sigma; split.
rewrite <-H3; eauto. now rewrite <-H1, <-H2, N.
Qed.
Program Instance uni_normalise (I: uni X) : uni X :=
{ Gammaᵤ := Gammaᵤ I; sᵤ := eta (sᵤ I) H1ᵤ; tᵤ := eta (tᵤ I) H2ᵤ; Aᵤ := Aᵤ I }.
Next Obligation.
eapply preservation_under_steps. rewrite <-eta_correct. all: eauto.
Qed.
Next Obligation.
eapply preservation_under_steps. rewrite <-eta_correct. all: eauto.
Qed.
Lemma uni_normalise_correct I:
U X I <-> U X (uni_normalise I).
Proof.
split; intros H; [eapply @U_reduction|eapply @U_reduction with (I := uni_normalise I)].
all: eauto; cbn; eapply equiv_join.
1, 3, 6, 8: rewrite eta_correct. all: reflexivity.
Qed.
End Normalisation.
Import ListNotations.
From Undecidability.HOU.calculus Require Import
prelim terms syntax semantics equivalence typing order evaluator.
Set Default Proof Using "Type".
Section UnificationDefinitions.
Context {X: Const}.
Class uni :=
{
Gammaᵤ : ctx;
sᵤ : exp X;
tᵤ : exp X;
Aᵤ : type;
H1ᵤ : Gammaᵤ ⊢ sᵤ : Aᵤ;
H2ᵤ : Gammaᵤ ⊢ tᵤ : Aᵤ
}.
Definition U (I: uni) :=
exists (Delta: ctx) (sigma: fin -> exp X), Delta ⊩ sigma : Gammaᵤ /\ sigma • sᵤ ≡ sigma • tᵤ.
End UnificationDefinitions.
Arguments uni _ : clear implicits.
Arguments U _ : clear implicits.
#[export] Hint Resolve H1ᵤ H2ᵤ : core.
Definition NU {X: Const} (I: uni X) :=
exists Delta sigma, Delta ⊩ sigma : Gammaᵤ /\ sigma • sᵤ ≡ sigma • tᵤ /\ forall x, normal (sigma x).
Section Normalisation.
Section SubstitutionTransformations.
Variable (X: Const) (n: nat) (s t: exp X) (A: type) (Gamma: ctx).
Hypothesis (Leq: 1 <= n).
Hypothesis (T1: Gamma ⊢(n) s : A) (T2: Gamma ⊢(n) t : A).
Implicit Types (Delta: ctx) (sigma : fin -> exp X).
Lemma normalise_subst Delta sigma:
Delta ⊩ sigma : Gamma ->
{ tau | (forall x, sigma x >* tau x) /\
(forall x, x ∈ dom Gamma -> normal (tau x)) /\ Delta ⊩ tau : Gamma}.
Proof.
intros T.
assert (forall x, x ∈ dom Gamma -> { A | nth Gamma x = Some A }) as I.
{ intros x H1. destruct nth eqn: ?; eauto.
exfalso. domin H1. congruence. }
exists (fun x => match x el dom Gamma with
| left H => eta (sigma x) (T _ _ (proj2_sig (I x H)))
| right _ => sigma x
end).
split; [| split].
1-2: intros x; destruct dec_in; intuition.
eapply eta_correct. eapply eta_normal.
intros x B H. destruct dec_in; intuition.
destruct I; cbn. generalize (T x x0 e).
rewrite H in e; injection e as ->.
eapply eta_typing.
Qed.
End SubstitutionTransformations.
Variable (X: Const).
Arguments sᵤ {_} _.
Arguments tᵤ {_} _.
Arguments Gammaᵤ {_} _.
Arguments Aᵤ {_} _.
Lemma U_NU I: U X I <-> NU I.
Proof.
split; intros (Delta & sigma & H1 & H2); [| exists Delta; exists sigma; intuition].
eapply normalise_subst in H1 as (tau & H5 & H6 & H7).
pose (theta x := if nth (Gammaᵤ I) x then tau x else var x).
exists Delta. exists theta. intuition.
+ intros ???; unfold theta; rewrite H; eapply H7; eauto.
+ rewrite subst_pointwise_equiv with (sigma := theta) (tau := sigma).
rewrite subst_pointwise_equiv with (sigma := theta) (tau := sigma); eauto.
all: intros ? H; eapply typing_variables in H; eauto; domin H.
all: unfold theta; now rewrite H, H5.
+ unfold theta; destruct nth eqn: ?; [|eauto].
domin Heqo; eauto.
Qed.
Lemma U_reduction (I I': uni X):
sᵤ I ≡ sᵤ I' -> tᵤ I ≡ tᵤ I' ->
Gammaᵤ I = Gammaᵤ I' -> Aᵤ I = Aᵤ I' ->
U X I -> U X I'.
Proof.
intros H1 H2 H3 H4; intros (Delta & sigma & T & N); exists Delta; exists sigma; split.
rewrite <-H3; eauto. now rewrite <-H1, <-H2, N.
Qed.
Program Instance uni_normalise (I: uni X) : uni X :=
{ Gammaᵤ := Gammaᵤ I; sᵤ := eta (sᵤ I) H1ᵤ; tᵤ := eta (tᵤ I) H2ᵤ; Aᵤ := Aᵤ I }.
Next Obligation.
eapply preservation_under_steps. rewrite <-eta_correct. all: eauto.
Qed.
Next Obligation.
eapply preservation_under_steps. rewrite <-eta_correct. all: eauto.
Qed.
Lemma uni_normalise_correct I:
U X I <-> U X (uni_normalise I).
Proof.
split; intros H; [eapply @U_reduction|eapply @U_reduction with (I := uni_normalise I)].
all: eauto; cbn; eapply equiv_join.
1, 3, 6, 8: rewrite eta_correct. all: reflexivity.
Qed.
End Normalisation.