Require Import List Bool.
From Undecidability.Synthetic
Require Import Definitions ReducibilityFacts
InformativeDefinitions InformativeReducibilityFacts.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list utils_decidable finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations utils decidable discernable
fol_ops fo_sig fo_terms fo_logic fo_sat
Sig1_1 red_utils.
Set Default Proof Using "Type".
Set Implicit Arguments.
Import fol_notations.
Local Infix "∊" := In (at level 70, no associativity).
Local Infix "⊑" := incl (at level 70, no associativity).
Local Notation ø := vec_nil.
Local Infix "≢" := discernable (at level 70, no associativity).
Local Infix "≡" := undiscernable (at level 70, no associativity).
Section FSAT_equiv_discernable_rels.
Variable Σ : fo_signature.
Local Definition test K := @fol_atom Σ K (vec_set_pos (fun _ => £0)).
Variables (P Q : rels Σ).
Section model.
Variable (δ : rels Σ -> bool) (HP : δ P = true) (HQ : δ Q = false).
Let M : fo_model Σ bool.
Proof.
split.
+ intros; exact true.
+ intros r _; exact (δ r = true).
Defined.
Local Fact discernable_rels_FSAT : FSAT Σ (test P ⟑ (test Q ⤑ ⊥)).
Proof using δ M HQ HP.
exists bool, M; msplit 2.
+ apply finite_t_bool.
+ intros r v; simpl; apply bool_dec.
+ exists (fun _ => true); simpl.
now rewrite HP, HQ.
Qed.
End model.
Theorem FSAT_equiv_discernable_rels : FSAT Σ (test P ⟑ (test Q ⤑ ⊥)) <-> P ≢ Q.
Proof.
rewrite discernable_equiv1.
split.
+ intros (D & M & H1 & H2 & rho & H3 & H4).
exists (fun K => if @H2 K (vec_set_pos (fun _ => rho 0)) then true else false).
simpl in H3, H4 |- *.
rewrite vec_map_set_pos in H3, H4.
do 2 match goal with
|- context[if ?c then _ else _] => destruct c
end; auto; tauto.
+ intros (f & H1 & H2).
apply discernable_rels_FSAT with f; auto.
Qed.
End FSAT_equiv_discernable_rels.
Section FSAT_equiv_discernable_syms.
Variables (Σ : fo_signature) (P : rels Σ) (HP : ar_rels Σ P = 1).
Let termt (p : syms Σ) : fo_term (ar_syms Σ) := in_fot p (vec_set_pos (fun _ => in_var 0)).
Local Definition testt (p : syms Σ) : fol_form Σ := fol_atom P (cast (termt p##ø) (eq_sym HP)).
Variables (f g : syms Σ).
Section model.
Variable (δ : syms Σ -> bool) (Hp : δ f = true) (Hq : δ g = false).
Let M : fo_model Σ bool.
Proof.
split.
+ intros s _; exact (δ s).
+ intros r; simpl; intros v.
exact (match v with vec_nil => True | h##_ => h = true end).
Defined.
Local Fact discernable_syms_FSAT : FSAT Σ (testt f ⟑ (testt g ⤑ ⊥)).
Proof using δ M Hq Hp.
exists bool, M; msplit 2.
+ apply finite_t_bool.
+ intros r v; simpl.
destruct v; try tauto.
apply bool_dec.
+ exists (fun _ => true); simpl.
rewrite HP; simpl.
now rewrite Hp, Hq.
Qed.
End model.
Theorem FSAT_equiv_discernable_syms : FSAT Σ (testt f ⟑ (testt g ⤑ ⊥)) <-> f ≢ g.
Proof.
rewrite discernable_equiv1.
split.
+ intros (D & M & H1 & H2 & rho & H3 & H4).
simpl in H3, H4 |- *.
exists (fun k => if H2 P (vec_map (fo_term_sem M rho)
(cast (termt k ## ø) (eq_sym HP))) then true else false).
do 2 match goal with
|- context[if ?c then _ else _] => destruct c
end; auto; tauto.
+ intros (δ & H1 & H2).
apply discernable_syms_FSAT with δ; auto.
Qed.
End FSAT_equiv_discernable_syms.
Section FSAT_DEC_implies_discernable_rels.
Variable Σ : fo_signature.
Hypothesis HXY : forall A, decidable (FSAT Σ A).
Theorem FSAT_dec_implies_discernable_rels_dec (P Q : rels Σ) : decidable (discernable P Q).
Proof using HXY.
destruct (HXY (test P ⟑ (test Q ⤑ ⊥))) as [ H | H ].
+ left; revert H; apply FSAT_equiv_discernable_rels.
+ right; contradict H; revert H; apply FSAT_equiv_discernable_rels.
Qed.
End FSAT_DEC_implies_discernable_rels.
Section FSAT_DEC_implies_discernable_syms.
Variables (Σ : fo_signature) (P : rels Σ) (HP : ar_rels Σ P = 1).
Hypothesis HXY : forall A, decidable (FSAT Σ A).
Theorem FSAT_dec_implies_discernable_syms_dec (f g : syms Σ) : decidable (discernable f g).
Proof using HXY HP.
destruct (HXY (testt HP f ⟑ (testt HP g ⤑ ⊥))) as [ H | H ].
+ left; revert H; apply FSAT_equiv_discernable_syms.
+ right; contradict H; revert H; apply FSAT_equiv_discernable_syms.
Qed.
End FSAT_DEC_implies_discernable_syms.
Section discrete_projection.
Variable (X Y : Type) (HY : discrete Y) (f : X -> Y) (l : list X).
Fact find_discrete_projection y : { x | x ∊ l /\ f x = y } + (forall x, x ∊ l -> f x <> y).
Proof using HY.
destruct list_choose_dep
with (P := fun x => f x = y) (Q := fun x => f x <> y) (l := l)
as [ (? & ? & ?) | ]; eauto.
intros; apply HY.
Qed.
End discrete_projection.
Section discriminable_implies_FSAT_DEC.
Variable (X Y : Type)
(lX : list X) (HlX : discriminable_list lX)
(lY : list Y) (HlY : discriminable_list lY).
Let DX := projT1 HlX.
Let DX_discr : discrete DX. Proof. apply (projT2 HlX). Qed.
Let DX_fin : finite_t DX. Proof. apply (projT2 (projT2 HlX)). Qed.
Let δ : X -> DX := proj1_sig (projT2 (projT2 (projT2 HlX))).
Let Hδ u v : u ∊ lX -> v ∊ lX -> u ≡ v <-> δ u = δ v.
Proof. apply (proj2_sig (projT2 (projT2 (projT2 HlX)))). Qed.
Let DY := projT1 HlY.
Let DY_discr : discrete DY. Proof. apply (projT2 HlY). Qed.
Let DY_fin : finite_t DY. Proof. apply (projT2 (projT2 HlY)). Qed.
Let ρ : Y -> DY := proj1_sig (projT2 (projT2 (projT2 HlY))).
Let Hρ u v : u ∊ lY -> v ∊ lY -> u ≡ v <-> ρ u = ρ v.
Proof. apply (proj2_sig (projT2 (projT2 (projT2 HlY)))). Qed.
Let fromX d : { x | x ∊ lX /\ δ x = d } + (forall x, x ∊ lX -> δ x <> d).
Proof. now apply find_discrete_projection. Qed.
Let fromY d : { y | y ∊ lY /\ ρ y = d } + (forall y, y ∊ lY -> ρ y <> d).
Proof. now apply find_discrete_projection. Qed.
Fixpoint fot_discriminable_discrete (t : fo_term (fun _ : X => 1)) : fo_term (fun _ : DX => 1) :=
match t with
| in_var n => in_var n
| in_fot s v => in_fot (δ s) ((fot_discriminable_discrete (vec_pos v pos0))##ø)
end.
Fixpoint Σdiscriminable_discrete (A : fol_form (Σ11 X Y)) : fol_form (Σ11 DX DY) :=
match A with
| ⊥ => ⊥
| fol_atom r v => @fol_atom (Σ11 DX DY) (ρ r) (vec_map fot_discriminable_discrete v)
| fol_bin b A B => fol_bin b (Σdiscriminable_discrete A) (Σdiscriminable_discrete B)
| fol_quant q A => fol_quant q (Σdiscriminable_discrete A)
end.
Section sound.
Variable (K : Type).
Variable (M : fo_model (Σ11 X Y) K) (HM : fo_model_dec M) (Kdiscr : discrete K).
Let M' : fo_model (Σ11 DX DY) K.
Proof.
split.
+ intros s.
destruct (fromX s) as [ (x & Hx1 & Hx2) | C ].
* apply (fom_syms M x).
* apply vec_head.
+ intros r.
destruct (fromY r) as [ (y & Hy1 & Hy2) | C ].
* apply (fom_rels M y).
* exact (fun _ => True).
Defined.
Let M'_dec : fo_model_dec M'.
Proof.
intros r v; simpl.
destruct (fromY r) as [ (y & Hy1 & Hy2) | C ].
+ apply HM.
+ tauto.
Qed.
Hint Resolve in_eq incl_tl incl_appl incl_appr incl_refl : core.
Let term_equal (t : fo_term (fun _ : X => 1)) φ :
fo_term_syms t ⊑ lX
-> fo_term_sem M' φ (fot_discriminable_discrete t)
= fo_term_sem M φ t.
Proof.
induction t as [ n | s v IH ]; simpl; intros Ht; auto.
destruct (fromX (δ s)) as [ (x & Hx1 & Hx2) | C ].
2: destruct (C s); auto.
revert IH Ht; vec split v with a; vec nil v; intros IH Ht.
simpl in Ht |- *.
rewrite <- app_nil_end in Ht.
specialize (IH pos0); simpl in IH.
assert (undiscernable x s) as Hxs by (apply Hδ; auto).
rewrite IH.
2: apply incl_tran with (2 := Ht); intro; simpl; tauto.
apply undiscernable_discrete with (δ := fun u => fom_syms M u (fo_term_sem M φ a ## ø)); auto.
Qed.
Let form_equiv (A : fol_form (Σ11 X Y)) φ :
fol_syms A ⊑ lX
-> fol_rels A ⊑ lY
-> fol_sem M' φ (Σdiscriminable_discrete A) <-> fol_sem M φ A.
Proof.
induction A as [ | r v | b A HA B HB | q A HA ] in φ |- *; simpl; intros G1 G2; try tauto.
+ destruct (fromY (ρ r)) as [ (y & Hy1 & Hy2) | C ].
2: destruct (C r); auto.
apply Hρ in Hy2; auto.
apply undiscernable_Prop_dec
with (P := fun z => fom_rels M z (vec_map (fo_term_sem M φ) v)) in Hy2.
2: intro; apply HM.
rewrite <- Hy2.
fol equiv.
rewrite vec_map_map.
clear Hy2.
revert G1; vec split v with a; vec nil v; simpl; rewrite <- app_nil_end; intros G1.
f_equal; apply term_equal; auto.
+ apply incl_app_inv in G1 as [].
apply incl_app_inv in G2 as [].
apply fol_bin_sem_ext; auto.
+ destruct q; fol equiv; auto.
Qed.
Hypothesis Kfin : finite_t K.
Variables (φ : nat -> K)
(A : fol_form (Σ11 X Y))
(HA1 : fol_syms A ⊑ lX)
(HA2 : fol_rels A ⊑ lY)
(HA : fol_sem M φ A).
Local Fact Σdiscriminable_discrete_sound : FSAT _ (Σdiscriminable_discrete A).
Proof using φ Kfin Kdiscr HM HA2 HA1 HA.
exists K, M', Kfin, M'_dec, φ.
now apply form_equiv.
Qed.
End sound.
Section complete.
Variable (K : Type).
Variable (M : fo_model (Σ11 DX DY) K) (HM : fo_model_dec M).
Let M' : fo_model (Σ11 X Y) K.
Proof.
split.
+ exact (fun s => fom_syms M (δ s)).
+ exact (fun r => fom_rels M (ρ r)).
Defined.
Let M'_dec : fo_model_dec M'.
Proof.
intros r v; simpl.
apply HM.
Qed.
Let term_equal t φ : fo_term_sem M φ (fot_discriminable_discrete t)
= fo_term_sem M' φ t.
Proof.
induction t as [ n | s v IH ]; simpl; auto.
specialize (IH pos0); revert IH.
vec split v with a; vec nil v; simpl; intros ->; auto.
Qed.
Let form_equiv A φ : fol_sem M φ (Σdiscriminable_discrete A) <-> fol_sem M' φ A.
Proof.
induction A as [ | r v | b A HA B HB | q A HA ] in φ |- *; simpl; try tauto.
+ rewrite vec_map_map; fol equiv.
vec split v with a; vec nil v; simpl; f_equal; auto.
+ apply fol_bin_sem_ext; auto.
+ destruct q; fol equiv; auto.
Qed.
Hypothesis Kfin : finite_t K.
Variables (φ : nat -> K) (A : fol_form (Σ11 X Y)) (HA : fol_sem M φ (Σdiscriminable_discrete A)).
Local Fact Σdiscriminable_discrete_complete : FSAT _ A.
Proof using lY lX M'_dec Kfin HlY HlX HM HA DY DX.
exists K, M', Kfin, M'_dec, φ.
now apply form_equiv.
Qed.
End complete.
Theorem Σdiscriminable_discrete_correct (A : fol_form (Σ11 X Y)) :
fol_syms A ⊑ lX
-> fol_rels A ⊑ lY
-> { DX : _ &
{ DY : _ &
{ _ : discrete DX &
{ _ : discrete DY &
{ _ : finite_t DX &
{ _ : finite_t DY &
{ B : fol_form (Σ11 DX DY) | FSAT _ A <-> FSAT _ B } } } } } } }.
Proof using HlY HlX DY_fin DY_discr DY DX_fin DX_discr DX.
intros HX HY.
exists DX, DY.
do 4 (exists; [ auto | ]).
exists (Σdiscriminable_discrete A).
split.
+ rewrite fo_form_fin_dec_SAT_discr_equiv.
intros (K & H0 & M & H1 & H2 & phi & H3).
apply Σdiscriminable_discrete_sound with K M phi; auto.
+ intros (K & M & H1 & H2 & phi & H3).
apply Σdiscriminable_discrete_complete with K M phi; auto.
Qed.
End discriminable_implies_FSAT_DEC.
Theorem Sig_discernable_dec_to_discrete X Y :
(forall u v : X, decidable (u ≢ v))
-> (forall u v : Y, decidable (u ≢ v))
-> forall A : fol_form (Σ11 X Y),
{ DX : _
& { DY : _
& { _ : discrete DX
& { _ : discrete DY
& { _ : finite_t DX
& { _ : finite_t DY
& { B | FSAT (Σ11 X Y) A <-> FSAT (Σ11 DX DY) B } } } } } } }.
Proof.
intros HX HY A.
generalize (discernable_discriminable_list HX (fol_syms A))
(discernable_discriminable_list HY (fol_rels A)); intros HlX HlY.
destruct (@Σdiscriminable_discrete_correct _ _ _ HlX _ HlY A)
as (DX & DY & ? & ? & ? & ? & B & HB).
1,2: apply incl_refl.
exists DX, DY.
do 4 (exists; [ auto | ]).
exists B; auto.
Qed.