Require Import Vector List Lia.
Require Import Coq.Vectors.Vector.
Definition vec := t.
Require Import Equations.Equations.
Require Import Coq.Vectors.Vector.
Definition vec := t.
Require Import Equations.Equations.
Definition of First Order Logic in Coq
syms | syms | Funcs ar_syms | ar_syms | fun_ar var | in_var | var_term func | in_fot | Func preds | rels | Preds ar_preds | ar_rels | pred_ar binop | fol_bop | - quantop | fol_qop | - fal | fol_false | Fal atom | fol_atom | Pred bin | fol_bin | Impl / ... quant | fol_quant | All / ...
(* Some preliminary definitions for substitions *)
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
fun n => match n with
| 0 => x
| S n => xi n
end.
Definition funcomp {X Y Z} (g : Y -> Z) (f : X -> Y) :=
fun x => g (f x).
(* Signatures are a record to allow for easier definitions of general transformations on signatures *)
Class funcs_signature :=
{ syms : Type; ar_syms : syms -> nat }.
Coercion syms : funcs_signature >-> Sortclass.
Class preds_signature :=
{ preds : Type; ar_preds : preds -> nat }.
Coercion preds : preds_signature >-> Sortclass.
Section fix_signature.
Context {Σ_funcs : funcs_signature}.
(* We use the stdlib definition of vectors to be maximally compatible *)
Unset Elimination Schemes.
Inductive term : Type :=
| var : nat -> term
| func : forall (f : syms), vec term (ar_syms f) -> term.
Set Elimination Schemes.
Fixpoint subst_term (σ : nat -> term) (t : term) : term :=
match t with
| var t => σ t
| func f v => func f (map (subst_term σ) v)
end.
Context {Σ_preds : preds_signature}.
(* We use a flag to switch on and off a constant for falisity *)
Inductive falsity_flag := falsity_off | falsity_on.
Existing Class falsity_flag.
Existing Instance falsity_on | 1.
Existing Instance falsity_off | 0.
(* Syntax is parametrised in binary operators and quantifiers.
Most developments will fix these types in the beginning and never change them.
*)
Class operators := {binop : Type ; quantop : Type}.
Context {ops : operators}.
(* Formulas have falsity as fixed constant -- we could parametrise against this in principle *)
Inductive form : falsity_flag -> Type :=
| falsity : form falsity_on
| atom {b} : forall (P : preds), vec term (ar_preds P) -> form b
| bin {b} : binop -> form b -> form b -> form b
| eq {b} : term -> term -> form b
| quant {b} : quantop -> form b -> form b.
Arguments form {_}.
Lemma form_ind_falsity_on :
forall f : form -> Type,
f falsity ->
(forall P (t : vec term (ar_preds P)), f (atom P t)) ->
(forall (b : binop) (φ : form), f φ -> forall ψ : form, f ψ -> f (bin b φ ψ)) ->
(forall t s, f (eq t s) ) ->
(forall (q : quantop) (φ : form), f φ -> f (quant q φ)) ->
forall (φ : form), f φ.
Proof.
intros. specialize (form_rect (fun ff => match ff with falsity_on => f | _ => fun _ => True end)).
intros H'. apply H' with (f5 := falsity_on); clear H'. all: intros; try destruct b; trivial.
all: intuition eauto 2.
Qed.
Definition up (σ : nat -> term) := scons (var 0) (funcomp (subst_term (funcomp var S)) σ).
Fixpoint subst_form `{falsity_flag} (σ : nat -> term) (phi : form) : form :=
match phi with
| falsity => falsity
| atom P v => atom P (map (subst_term σ) v)
| bin op phi1 phi2 => bin op (subst_form σ phi1) (subst_form σ phi2)
| eq s t => eq (subst_term σ s) (subst_term σ t)
| quant op phi => quant op (subst_form (up σ) phi)
end.
Fixpoint form_depth `{falsity_flag} phi :=
match phi with
| falsity => 0
| atom P v => 0
| bin op phi1 phi2 => S (form_depth phi1 + form_depth phi2)
| eq s t => 0
| quant op phi => S (form_depth phi)
end.
(* Induction principle for terms *)
Inductive Forall {A : Type} (P : A -> Type) : forall {n}, t A n -> Type :=
| Forall_nil : Forall P (@Vector.nil A)
| Forall_cons : forall n (x : A) (l : t A n), P x -> Forall P l -> Forall P (@Vector.cons A x n l).
Inductive vec_in {A : Type} (a : A) : forall {n}, t A n -> Type :=
| vec_inB {n} (v : t A n) : vec_in a (cons A a n v)
| vec_inS a' {n} (v : t A n) : vec_in a v -> vec_in a (cons A a' n v).
Hint Constructors vec_in : core.
Lemma term_rect' (p : term -> Type) :
(forall x, p (var x)) -> (forall F v, (Forall p v) -> p (func F v)) -> forall (t : term), p t.
Proof.
intros f1 f2. fix strong_term_ind' 1. destruct t as [n|F v].
- apply f1.
- apply f2. induction v.
+ econstructor.
+ econstructor. now eapply strong_term_ind'. eauto.
Qed.
Lemma term_rect (p : term -> Type) :
(forall x, p (var x)) -> (forall F v, (forall t, vec_in t v -> p t) -> p (func F v)) -> forall (t : term), p t.
Proof.
intros f1 f2. eapply term_rect'.
- apply f1.
- intros. apply f2. intros t. induction 1; inversion X; subst; eauto.
apply Eqdep_dec.inj_pair2_eq_dec in H2; subst; eauto. decide equality.
Qed.
Lemma term_ind (p : term -> Prop) :
(forall x, p (var x)) -> (forall F v (IH : forall t, In t v -> p t), p (func F v)) -> forall (t : term), p t.
Proof.
intros f1 f2. eapply term_rect'.
- apply f1.
- intros. apply f2. intros t. induction 1; inversion X; subst; eauto.
apply Eqdep_dec.inj_pair2_eq_dec in H3; subst; eauto. decide equality.
Qed.
End fix_signature.
(* Setting implicit arguments is crucial *)
(* We can write term both with and without arguments, but printing is without. *)
Arguments term _, {_}.
Arguments var _ _, {_} _.
Arguments func _ _ _, {_} _ _.
Arguments subst_term {_} _ _.
(* Formulas can be written with the signatures explicit or not.
If the operations are explicit, the signatures are too.
*)
Arguments form _ _ _ _, _ _ {_ _}, {_ _ _ _}, {_ _ _} _.
Arguments atom _ _ _ _, _ _ {_ _}, {_ _ _ _}.
Arguments bin _ _ _ _, _ _ {_ _}, {_ _ _ _}.
Arguments quant _ _ _ _, _ _ {_ _}, {_ _ _ _}.
Arguments up _, {_}.
Arguments subst_form _ _ _ _, _ _ {_ _}, {_ _ _ _}.
(* Substitution Notation *)
Declare Scope subst_scope.
Open Scope subst_scope.
Notation "$ x" := (var x) (at level 3, format "$ '/' x") : subst_scope.
Notation "t `[ sigma ]" := (subst_term sigma t) (at level 7, left associativity, format "t '/' `[ sigma ]") : subst_scope.
Notation "phi [ sigma ]" := (subst_form sigma phi) (at level 7, left associativity, format "phi '/' [ sigma ]") : subst_scope.
Notation "s .: sigma" := (scons s sigma) (at level 70, right associativity) : subst_scope.
Notation "f >> g" := (funcomp g f) (at level 50) : subst_scope.
Notation "s '..'" := (scons s var) (at level 4, format "s ..") : subst_scope.
Notation "↑" := (S >> var) : subst_scope.
Substituion lemmas
Ltac cbns :=
cbn; repeat (match goal with [ |- context f[subst_form ?sigma ?phi] ] => change (subst_form sigma phi) with (phi[sigma]) end).
Section Subst.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Lemma subst_term_ext (t : term) sigma tau :
(forall n, sigma n = tau n) -> t`[sigma] = t`[tau].
Proof.
intros H. induction t; cbn.
- now apply H.
- f_equal. now apply map_ext_in.
Qed.
Lemma subst_term_id (t : term) sigma :
(forall n, sigma n = var n) -> t`[sigma] = t.
Proof.
intros H. induction t; cbn.
- now apply H.
- f_equal. now erewrite map_ext_in, map_id.
Qed.
Lemma subst_term_var (t : term) :
t`[var] = t.
Proof.
now apply subst_term_id.
Qed.
Lemma subst_term_comp (t : term) sigma tau :
t`[sigma]`[tau] = t`[sigma >> subst_term tau].
Proof.
induction t; cbn.
- reflexivity.
- f_equal. rewrite map_map. now apply map_ext_in.
Qed.
Lemma subst_term_shift (t : term) s :
t`[↑]`[s..] = t.
Proof.
rewrite subst_term_comp. apply subst_term_id. now intros [|].
Qed.
Lemma up_term (t : term) xi :
t`[↑]`[up xi] = t`[xi]`[↑].
Proof.
rewrite !subst_term_comp. apply subst_term_ext. reflexivity.
Qed.
Lemma up_ext sigma tau :
(forall n, sigma n = tau n) -> forall n, up sigma n = up tau n.
Proof.
destruct n; cbn; trivial.
unfold funcomp. now rewrite H.
Qed.
Lemma up_var sigma :
(forall n, sigma n = var n) -> forall n, up sigma n = var n.
Proof.
destruct n; cbn; trivial.
unfold funcomp. now rewrite H.
Qed.
Lemma up_funcomp sigma tau :
forall n, (up sigma >> subst_term (up tau)) n = up (sigma >> subst_term tau) n.
Proof.
intros [|]; cbn; trivial.
setoid_rewrite subst_term_comp.
apply subst_term_ext. now intros [|].
Qed.
Lemma subst_ext {ff : falsity_flag} (phi : form) sigma tau :
(forall n, sigma n = tau n) -> phi[sigma] = phi[tau].
Proof.
induction phi in sigma, tau |- *; cbns; intros H.
- reflexivity.
- f_equal. apply map_ext. intros s. now apply subst_term_ext.
- now erewrite IHphi1, IHphi2.
- f_equal; now apply subst_term_ext.
- erewrite IHphi; trivial. now apply up_ext.
Qed.
Lemma subst_id {ff : falsity_flag} (phi : form) sigma :
(forall n, sigma n = var n) -> phi[sigma] = phi.
Proof.
induction phi in sigma |- *; cbns; intros H.
- reflexivity.
- f_equal. erewrite map_ext; try apply map_id. intros s. now apply subst_term_id.
- now erewrite IHphi1, IHphi2.
- f_equal; now apply subst_term_id.
- erewrite IHphi; trivial. now apply up_var.
Qed.
Lemma subst_var {ff : falsity_flag} (phi : form) :
phi[var] = phi.
Proof.
now apply subst_id.
Qed.
Lemma subst_comp {ff : falsity_flag} (phi : form) sigma tau :
phi[sigma][tau] = phi[sigma >> subst_term tau].
Proof.
induction phi in sigma, tau |- *; cbns.
- reflexivity.
- f_equal. rewrite map_map. apply map_ext. intros s. apply subst_term_comp.
- now rewrite IHphi1, IHphi2.
- f_equal; now apply subst_term_comp.
- rewrite IHphi. f_equal. now apply subst_ext, up_funcomp.
Qed.
Lemma subst_shift {ff : falsity_flag} (phi : form) s :
phi[↑][s..] = phi.
Proof.
rewrite subst_comp. apply subst_id. now intros [|].
Qed.
Lemma up_form {ff : falsity_flag} xi psi :
psi[↑][up xi] = psi[xi][↑].
Proof.
rewrite !subst_comp. apply subst_ext. reflexivity.
Qed.
Fixpoint iter {X: Type} f n (x : X) :=
match n with
0 => x
| S m => f (iter f m x)
end.
Lemma iter_switch {X} f n (x : X) :
f (iter f n x) = iter f n (f x).
Proof.
induction n. reflexivity.
cbn. now rewrite IHn.
Qed.
Lemma up_decompose {ff : falsity_flag} sigma phi :
phi[up (S >> sigma)][(sigma 0)..] = phi[sigma].
Proof.
rewrite subst_comp. apply subst_ext.
intros [].
- reflexivity.
- apply subst_term_shift.
Qed.
End Subst.
Bounded formulas
Section Bounded.
Context {Σ_funcs : funcs_signature}.
Context {Σ_preds : preds_signature}.
Context {ops : operators}.
Inductive bounded_t n : term -> Prop :=
| bounded_var x : n > x -> bounded_t n $x
| bouded_func f v : (forall t, Vector.In t v -> bounded_t n t) -> bounded_t n (func f v).
Inductive bounded : forall {ff}, nat -> form ff -> Prop :=
| bounded_atom ff n P v : (forall t, Vector.In t v -> bounded_t n t) -> @bounded ff n (atom P v)
| bounded_bin binop ff n phi psi : @bounded ff n phi -> @bounded ff n psi -> @bounded ff n (bin binop phi psi)
| bounded_eq ff n s t : bounded_t n s -> bounded_t n t -> @bounded ff n (eq s t)
| bounded_quant quantop ff n phi : @bounded ff (S n) phi -> @bounded ff n (quant quantop phi)
| bounded_falsity n : @bounded falsity_on n falsity.
Arguments bounded {_} _ _.
Definition bounded_L {ff : falsity_flag} n A :=
forall phi, List.In phi A -> bounded n phi.
Lemma bounded_subst_t n t sigma tau :
(forall k, n > k -> sigma k = tau k) -> bounded_t n t -> t`[sigma] = t`[tau].
Proof.
intros H. induction 1; cbn; auto.
f_equal. now apply Vector.map_ext_in.
Qed.
Lemma bounded_subst {ff : falsity_flag} {n phi sigma tau} :
bounded n phi -> (forall k, n > k -> sigma k = tau k) -> phi[sigma] = phi[tau].
Proof.
induction 1 in sigma, tau |- *; cbn; intros HN; trivial.
- f_equal. apply Vector.map_ext_in. intros t Ht.
eapply bounded_subst_t; try apply HN. now apply H.
- now rewrite (IHbounded1 sigma tau), (IHbounded2 sigma tau).
- f_equal; eapply bounded_subst_t; eauto.
- f_equal. apply IHbounded. intros [|k] Hk; cbn; trivial.
unfold funcomp. rewrite HN; trivial. lia.
Qed.
Lemma bounded_up_t {n t k} :
bounded_t n t -> k >= n -> bounded_t k t.
Proof.
induction 1; intros Hk; constructor; try lia. firstorder.
Qed.
Lemma bounded_up {ff : falsity_flag} {n phi k} :
bounded n phi -> k >= n -> bounded k phi.
Proof.
induction 1 in k |- *; intros Hk; constructor; eauto.
- intros t Ht. eapply bounded_up_t; eauto.
- eapply bounded_up_t; eauto.
- eapply bounded_up_t; eauto.
- apply IHbounded. lia.
Qed.
Derive Signature for In.
Lemma find_bounded_step n (v : vec term n) :
(forall t : term, vec_in t v -> {n : nat | bounded_t n t}) -> { n | forall t, In t v -> bounded_t n t }.
Proof.
induction v; cbn; intros HV.
- exists 0. intros t. inversion 1.
- destruct IHv as [k Hk], (HV h) as [l Hl]; try left.
+ intros t Ht. apply HV. now right.
+ exists (k + l). intros t H. depelim H; cbn in *.
* injection H. intros _ <-. apply (bounded_up_t Hl). lia.
* injection H0. intros -> % Eqdep_dec.inj_pair2_eq_dec _; try decide equality.
apply (bounded_up_t (Hk t H)). lia.
Qed.
Lemma find_bounded_t t :
{ n | bounded_t n t }.
Proof.
induction t using term_rect.
- exists (S x). constructor. lia.
- apply find_bounded_step in X as [n H]. exists n. now constructor.
Qed.
Lemma find_bounded {ff : falsity_flag} phi :
{ n | bounded n phi }.
Proof.
induction phi.
- exists 0. constructor.
- destruct (find_bounded_step _ v) as [n Hn].
+ eauto using find_bounded_t.
+ exists n. now constructor.
- destruct IHphi1 as [n Hn], IHphi2 as [k Hk]. exists (n + k).
constructor; eapply bounded_up; try eassumption; lia.
- destruct (find_bounded_t t) as [n Hn], (find_bounded_t t0) as [l Hl].
exists (n + l). constructor; eapply bounded_up_t; eauto; lia.
- destruct IHphi as [n Hn]. exists n. constructor. apply (bounded_up Hn). lia.
Qed.
Lemma find_bounded_L {ff : falsity_flag} A :
{ n | bounded_L n A }.
Proof.
induction A; cbn.
- exists 0. intros phi. inversion 1.
- destruct IHA as [k Hk], (find_bounded a) as [l Hl].
exists (k + l). intros t [<-|H]; eapply bounded_up; try eassumption; try (now apply Hk); lia.
Qed.
Ltac invert_bounds :=
inversion 1; subst;
repeat match goal with
H : existT _ _ _ = existT _ _ _ |- _ => apply Eqdep_dec.inj_pair2_eq_dec in H; try decide equality
end; subst.
Lemma vec_cons_inv X n (v : Vector.t X n) x y :
In y (Vector.cons X x n v) -> (y = x) \/ (In y v).
Proof.
inversion 1; subst.
- now left.
- apply EqDec.inj_right_pair in H3 as ->. now right.
Qed.
Definition dec (P : Prop) := {P} + {~P}.
Lemma vec_all_dec X n (v : vec X n) (P : X -> Prop) :
(forall x, vec_in x v -> dec (P x)) -> dec (forall x, In x v -> P x).
Proof.
induction v; intros H.
- left. intros x. inversion 1.
- destruct (H h) as [H1|H1], IHv as [H2|H2]; try now left.
+ intros x Hx. apply H. now right.
+ intros x Hx. apply H. now right.
+ left. intros x [<-| Hx] % vec_cons_inv; intuition.
+ right. contradict H2. intros x Hx. apply H2. now right.
+ intros x Hx. apply H. now right.
+ right. contradict H1. apply H1. now left.
+ right. contradict H1. apply H1. now left.
Qed.
Context {sig_funcs_dec : EqDec Σ_funcs}.
Context {sig_preds_dec : EqDec Σ_preds}.
Lemma bounded_t_dec n t :
dec (bounded_t n t).
Proof.
pattern t; revert t. apply term_rect.
- intros x. destruct (Compare_dec.gt_dec n x) as [H|H].
+ left. now constructor.
+ right. inversion 1; subst. tauto.
- intros F v X. apply vec_all_dec in X as [H|H].
+ left. now constructor.
+ right. inversion 1; subst. apply EqDec.inj_right_pair in H3 as ->. tauto.
Qed.
End Bounded.
Ltac solve_bounds :=
repeat constructor; try lia; try inversion X; intros;
match goal with
| H : Vector.In ?x (@Vector.cons _ ?y _ ?v) |- _ => repeat apply vec_cons_inv in H as [->|H]; try inversion H
| H : Vector.In ?x (@Vector.nil _) |- _ => try inversion H
| _ => idtac
end.