Require Import Base FiniteTypes.FinTypes Vectors.Fin.
Instance Fin_eq_dec n : eq_dec (Fin.t n).
Proof.
intros; hnf.
destruct (eqb x y) eqn:E.
- left. now eapply eqb_eq.
- right. intros H. eapply eqb_eq in H. congruence.
Defined.
Definition all_Fin n := nat_rec (fun n0 : nat => list (t n0)) [] (fun (n0 : nat) (IHn : list (t n0)) => F1 :: map FS IHn) n.
Lemma in_undup_iff (X: eqType) (A: list X) x : x el A <-> x el (undup A).
Proof.
now rewrite undup_id_equi.
Qed.
Instance Fin_finTypeC n : finTypeC (EqType (Fin.t n)).
Proof.
eapply FinTypeC with (enum := undup (all_Fin n)).
intros.
apply dupfreeCount.
- apply dupfree_undup.
- rewrite <- in_undup_iff. apply countIn. cbn in *.
induction x; cbn.
+ decide _.
* inv e. omega.
* congruence.
+ admit.
Admitted.
(* (** finTypes from Lists *) *)
(* (* Conversion of lists over eqTypes to finite types *) *)
(* (* *) *)
Instance Fin_eq_dec n : eq_dec (Fin.t n).
Proof.
intros; hnf.
destruct (eqb x y) eqn:E.
- left. now eapply eqb_eq.
- right. intros H. eapply eqb_eq in H. congruence.
Defined.
Definition all_Fin n := nat_rec (fun n0 : nat => list (t n0)) [] (fun (n0 : nat) (IHn : list (t n0)) => F1 :: map FS IHn) n.
Lemma in_undup_iff (X: eqType) (A: list X) x : x el A <-> x el (undup A).
Proof.
now rewrite undup_id_equi.
Qed.
Instance Fin_finTypeC n : finTypeC (EqType (Fin.t n)).
Proof.
eapply FinTypeC with (enum := undup (all_Fin n)).
intros.
apply dupfreeCount.
- apply dupfree_undup.
- rewrite <- in_undup_iff. apply countIn. cbn in *.
induction x; cbn.
+ decide _.
* inv e. omega.
* congruence.
+ admit.
Admitted.
(* (** finTypes from Lists *) *)
(* (* Conversion of lists over eqTypes to finite types *) *)
(* (* *) *)
Pure predicates
(* taken from the development of Herditarily finite sets by Prof. Smolka and Kathrin Stark. *)
(* *)
Definition pure (X:Type) (p: X -> Prop) {D:forall x, dec (p x)} x := if Dec (p x) then True else False.
Arguments pure {X} p {D} x.
Lemma pure_equiv (X:Type) (p: X -> Prop) {D:forall x, dec (p x)} x : p x <-> pure p x.
Proof.
unfold pure. now dec.
Qed.
Lemma pure_impure (P: Prop) (_: dec P) (norm: if Dec (P) then True else False) : P.
Proof.
dec; tauto.
Qed.
Ltac impurify H := pose proof (pure_impure H) as impureH; try (clear H; rename impureH into H).
Lemma purify (X: Type) (p: X -> Prop) (D:forall x, dec (p x)) x (px: p x): pure p x.
Proof.
now apply pure_equiv.
Qed.
Arguments purify {X} {p} {D} {x} px.
Lemma pure_eq (X: Type) (p: X -> Prop) (D: forall x, dec (p x)) x (p1 p2: pure p x) : p1 = p2.
Proof.
unfold pure in *. dec.
+ now destruct p1, p2.
+ contradiction p1.
Qed.
(* (** Definition of subtypes *) *)
Definition subtype {X:Type} (p: X -> Prop) {D: forall x, dec (p x)} := { x:X | pure p x}.
Arguments subtype {X} p {D}.
Lemma subtype_extensionality (X: Type) (p: X -> Prop) {D: forall x, dec (p x)} (x x': subtype p) : proj1_sig x = proj1_sig x' <-> x = x'.
Proof.
split.
- intros H. destruct x, x'. cbn in H. subst x0. f_equal. apply pure_eq.
- congruence.
Qed.
Instance subType_eq_dec X (_: eq_dec X) (p: X -> Prop) (_: forall x, dec (p x)): eq_dec (subtype p).
Proof.
intros y z. destruct y as [x p1], z as [x' p2]. decide (x=x').
- left. now apply subtype_extensionality.
- right. intro H. apply n. now inv H.
Qed.
(* Lemma proj1_sig_fun (X: eqType) (p: X -> Prop) (x x': X) (p1: p x) (p2: p x'): exist p x p1 = exist p x' p2 -> x = x'. *)
(* Proof. *)
(* intro E. change x with (proj1_sig (exist p x p1)). change x' with (proj1_sig (exist p x' p2)). *)
(* now inv E. *)
(* Qed. *)
(* (** Subtypes from lists *) *)
(* Lemma in_undup_iff (X: eqType) (A: list X) x : x el A <-> x el (undup A). *)
(* Proof. *)
(* now rewrite undup_id_equi. *)
(* Qed. *)
Fixpoint toSubList (X: Type) (A: list X) (p: X -> Prop) (D:forall x, dec (p x)) : list (subtype p) :=
match A with
| nil => nil
| cons x A' => match Dec (p x) with
| left px => (exist _ x (purify px)) :: toSubList A' D
| right _ => toSubList A' _ end
end.
Arguments toSubList {X} A p {D}.
Lemma toSubList_count (X: eqType) (p: X -> Prop) (A: list X) (_:forall x, dec (p x)) x:
count (toSubList A p) x = count A (proj1_sig x).
Proof.
induction A.
- reflexivity.
- cbn. decide (p a).
+ simpl. dec.
* congruence.
* now rewrite <- subtype_extensionality in e.
* change a with (proj1_sig (exist (pure p) a (purify p0))) in e. now rewrite subtype_extensionality in e.
* exact IHA.
+ destruct x. cbn. dec.
* subst a. now impurify p0.
* exact IHA.
Qed.
(* Lemma subType_enum_ok (X:finType) (p: X -> Prop) (_: forall x, dec (p x)) x: *)
(* count (toSubList (elem X) p) x = 1. *)
(* Proof. *)
(* rewrite toSubList_count. apply enum_ok. *)
(* Qed. *)
Notation "'Subtype' p" := (finTypeC (EqType (subtype p))) (at level 5).
(* Instance finTypeC_sub (X:finType) (p: X -> Prop) (_:forall x, dec (p x)): Subtype p. *)
(* Proof. *)
(* econstructor. apply subType_enum_ok. *)
(* Defined. *)
(* *)
Definition pure (X:Type) (p: X -> Prop) {D:forall x, dec (p x)} x := if Dec (p x) then True else False.
Arguments pure {X} p {D} x.
Lemma pure_equiv (X:Type) (p: X -> Prop) {D:forall x, dec (p x)} x : p x <-> pure p x.
Proof.
unfold pure. now dec.
Qed.
Lemma pure_impure (P: Prop) (_: dec P) (norm: if Dec (P) then True else False) : P.
Proof.
dec; tauto.
Qed.
Ltac impurify H := pose proof (pure_impure H) as impureH; try (clear H; rename impureH into H).
Lemma purify (X: Type) (p: X -> Prop) (D:forall x, dec (p x)) x (px: p x): pure p x.
Proof.
now apply pure_equiv.
Qed.
Arguments purify {X} {p} {D} {x} px.
Lemma pure_eq (X: Type) (p: X -> Prop) (D: forall x, dec (p x)) x (p1 p2: pure p x) : p1 = p2.
Proof.
unfold pure in *. dec.
+ now destruct p1, p2.
+ contradiction p1.
Qed.
(* (** Definition of subtypes *) *)
Definition subtype {X:Type} (p: X -> Prop) {D: forall x, dec (p x)} := { x:X | pure p x}.
Arguments subtype {X} p {D}.
Lemma subtype_extensionality (X: Type) (p: X -> Prop) {D: forall x, dec (p x)} (x x': subtype p) : proj1_sig x = proj1_sig x' <-> x = x'.
Proof.
split.
- intros H. destruct x, x'. cbn in H. subst x0. f_equal. apply pure_eq.
- congruence.
Qed.
Instance subType_eq_dec X (_: eq_dec X) (p: X -> Prop) (_: forall x, dec (p x)): eq_dec (subtype p).
Proof.
intros y z. destruct y as [x p1], z as [x' p2]. decide (x=x').
- left. now apply subtype_extensionality.
- right. intro H. apply n. now inv H.
Qed.
(* Lemma proj1_sig_fun (X: eqType) (p: X -> Prop) (x x': X) (p1: p x) (p2: p x'): exist p x p1 = exist p x' p2 -> x = x'. *)
(* Proof. *)
(* intro E. change x with (proj1_sig (exist p x p1)). change x' with (proj1_sig (exist p x' p2)). *)
(* now inv E. *)
(* Qed. *)
(* (** Subtypes from lists *) *)
(* Lemma in_undup_iff (X: eqType) (A: list X) x : x el A <-> x el (undup A). *)
(* Proof. *)
(* now rewrite undup_id_equi. *)
(* Qed. *)
Fixpoint toSubList (X: Type) (A: list X) (p: X -> Prop) (D:forall x, dec (p x)) : list (subtype p) :=
match A with
| nil => nil
| cons x A' => match Dec (p x) with
| left px => (exist _ x (purify px)) :: toSubList A' D
| right _ => toSubList A' _ end
end.
Arguments toSubList {X} A p {D}.
Lemma toSubList_count (X: eqType) (p: X -> Prop) (A: list X) (_:forall x, dec (p x)) x:
count (toSubList A p) x = count A (proj1_sig x).
Proof.
induction A.
- reflexivity.
- cbn. decide (p a).
+ simpl. dec.
* congruence.
* now rewrite <- subtype_extensionality in e.
* change a with (proj1_sig (exist (pure p) a (purify p0))) in e. now rewrite subtype_extensionality in e.
* exact IHA.
+ destruct x. cbn. dec.
* subst a. now impurify p0.
* exact IHA.
Qed.
(* Lemma subType_enum_ok (X:finType) (p: X -> Prop) (_: forall x, dec (p x)) x: *)
(* count (toSubList (elem X) p) x = 1. *)
(* Proof. *)
(* rewrite toSubList_count. apply enum_ok. *)
(* Qed. *)
Notation "'Subtype' p" := (finTypeC (EqType (subtype p))) (at level 5).
(* Instance finTypeC_sub (X:finType) (p: X -> Prop) (_:forall x, dec (p x)): Subtype p. *)
(* Proof. *)
(* econstructor. apply subType_enum_ok. *)
(* Defined. *)
finTypes from Lists
(* Conversion of lists over eqTypes to finite types *)
(* *)
Lemma enum_ok_fromList (X: eqType) (A: list X) x : count (undup (toSubList A (fun x => x el A))) x = 1.
Proof.
apply dupfreeCount.
- apply dupfree_undup.
- rewrite <- in_undup_iff. apply countIn. cbn in *.
rewrite toSubList_count.
destruct x as [x p]. cbn. apply InCount. now impurify p.
Qed.
Instance fromListC (X: eqType) (A: list X) : Subtype (fun x => x el A).
Proof.
econstructor. intros [x p]. apply enum_ok_fromList.
Defined.
(* (* Canonical Structure finType_fromList (X: eqType) (A: list X) := FinType (EqSubType (fun x => x el A)). *) *)
(* (* Lemma finType_fromList_correct (X: eqType) (A: list X) : *) *)
(* (* map (@proj1_sig _ _) (elem (finType_fromList A)) === A. *) *)
(* (* Proof. *) *)
(* (* cbn. split. *) *)
(* (* - intros x H. destruct (in_map_iff (@proj1_sig _ _) (undup (toSubList A (fun x => x el A))) x) as H0 _. *) *)
(* (* specialize (H0 H). destruct H0 as [y p] [E _]. cbn in *. subst y. now impurify p. *) *)
(* (* - intros x H. apply in_map_iff. *) *)
(* (* eexists. Unshelve. Focus 2. *) *)
(* (* + exists x. unfold pure. now dec. *) *)
(* (* + cbn. split; auto. apply countIn with (A:= undup (toSubList A _)). rewrite enum_ok_fromList. omega. *) *)
(* (* Qed. *) *)
(* Definition finType_of := {x : X | x el A}. *)
(* Lemma eqType_finType_of : eq_dec finType_of. *)
(* Proof. *)
(* eapply subType_eq_dec. *)
(* Lemma enum_ok_fromList (X: eqType) (A: list X) x : count (undup (toSubList A (fun x => x el A))) x = 1. *)
(* Proof. *)
(* apply dupfreeCount. *)
(* - apply dupfree_undup. *)
(* - rewrite <- in_undup. apply countIn. rewrite toSubList_count. *)
(* destruct x as x p. cbn. apply InCount. now impurify p. *)
(* Qed. *)
(* Instance fromListC (X: eqType) (A: list X) : finTypeC (EqSubType (fun x => x el A)). *)
(* Proof. *)
(* econstructor. intros x p. apply enum_ok_fromList. *)
(* Defined. *)
(* Canonical Structure finType_fromList (X: eqType) (A: list X) := FinType (EqSubType (fun x => x el A)). *)
(* Lemma finType_fromList_correct (X: eqType) (A: list X) : *)
(* map (@proj1_sig _ _) (elem (finType_fromList A)) === A. *)
(* Proof. *)
(* cbn. split. *)
(* - intros x H. destruct (in_map_iff (@proj1_sig _ _) (undup (toSubList A (fun x => x el A))) x) as H0 _. *)
(* specialize (H0 H). destruct H0 as [y p] [E _]. cbn in *. subst y. now impurify p. *)
(* - intros x H. apply in_map_iff. *)
(* eexists. Unshelve. Focus 2. *)
(* + exists x. unfold pure. now dec. *)
(* + cbn. split; auto. apply countIn with (A:= undup (toSubList A _)). rewrite enum_ok_fromList. omega. *)
(* Qed. *)
(* *)
Lemma enum_ok_fromList (X: eqType) (A: list X) x : count (undup (toSubList A (fun x => x el A))) x = 1.
Proof.
apply dupfreeCount.
- apply dupfree_undup.
- rewrite <- in_undup_iff. apply countIn. cbn in *.
rewrite toSubList_count.
destruct x as [x p]. cbn. apply InCount. now impurify p.
Qed.
Instance fromListC (X: eqType) (A: list X) : Subtype (fun x => x el A).
Proof.
econstructor. intros [x p]. apply enum_ok_fromList.
Defined.
(* (* Canonical Structure finType_fromList (X: eqType) (A: list X) := FinType (EqSubType (fun x => x el A)). *) *)
(* (* Lemma finType_fromList_correct (X: eqType) (A: list X) : *) *)
(* (* map (@proj1_sig _ _) (elem (finType_fromList A)) === A. *) *)
(* (* Proof. *) *)
(* (* cbn. split. *) *)
(* (* - intros x H. destruct (in_map_iff (@proj1_sig _ _) (undup (toSubList A (fun x => x el A))) x) as H0 _. *) *)
(* (* specialize (H0 H). destruct H0 as [y p] [E _]. cbn in *. subst y. now impurify p. *) *)
(* (* - intros x H. apply in_map_iff. *) *)
(* (* eexists. Unshelve. Focus 2. *) *)
(* (* + exists x. unfold pure. now dec. *) *)
(* (* + cbn. split; auto. apply countIn with (A:= undup (toSubList A _)). rewrite enum_ok_fromList. omega. *) *)
(* (* Qed. *) *)
(* Definition finType_of := {x : X | x el A}. *)
(* Lemma eqType_finType_of : eq_dec finType_of. *)
(* Proof. *)
(* eapply subType_eq_dec. *)
(* Lemma enum_ok_fromList (X: eqType) (A: list X) x : count (undup (toSubList A (fun x => x el A))) x = 1. *)
(* Proof. *)
(* apply dupfreeCount. *)
(* - apply dupfree_undup. *)
(* - rewrite <- in_undup. apply countIn. rewrite toSubList_count. *)
(* destruct x as x p. cbn. apply InCount. now impurify p. *)
(* Qed. *)
(* Instance fromListC (X: eqType) (A: list X) : finTypeC (EqSubType (fun x => x el A)). *)
(* Proof. *)
(* econstructor. intros x p. apply enum_ok_fromList. *)
(* Defined. *)
(* Canonical Structure finType_fromList (X: eqType) (A: list X) := FinType (EqSubType (fun x => x el A)). *)
(* Lemma finType_fromList_correct (X: eqType) (A: list X) : *)
(* map (@proj1_sig _ _) (elem (finType_fromList A)) === A. *)
(* Proof. *)
(* cbn. split. *)
(* - intros x H. destruct (in_map_iff (@proj1_sig _ _) (undup (toSubList A (fun x => x el A))) x) as H0 _. *)
(* specialize (H0 H). destruct H0 as [y p] [E _]. cbn in *. subst y. now impurify p. *)
(* - intros x H. apply in_map_iff. *)
(* eexists. Unshelve. Focus 2. *)
(* + exists x. unfold pure. now dec. *)
(* + cbn. split; auto. apply countIn with (A:= undup (toSubList A _)). rewrite enum_ok_fromList. omega. *)
(* Qed. *)