Require Export BaseLists Dupfree.
Definition elAt := nth_error.
Notation "A '.[' i ']'" := (elAt A i) (no associativity, at level 50).
Section Fix_X.
Variable X : eqType.
Fixpoint pos (s : X) (A : list X) :=
match A with
| nil => None
| a :: A => if Dec (s = a) then Some 0 else match pos s A with None => None | Some n => Some (S n) end
end.
Lemma el_pos s A : s el A -> exists m, pos s A = Some m.
Proof.
revert s; induction A; simpl; intros s H.
- contradiction.
- decide (s = a) as [D | D]; eauto;
destruct H; try congruence.
destruct (IHA s H) as [n Hn]; eexists; now rewrite Hn.
Qed.
Lemma pos_elAt s A i : pos s A = Some i -> A .[i] = Some s.
Proof.
revert i s. induction A; intros i s.
- destruct i; inversion 1.
- simpl. decide (s = a).
+ inversion 1; subst; reflexivity.
+ destruct i; destruct (pos s A) eqn:B; inversion 1; subst; eauto.
Qed.
Lemma elAt_app (A : list X) i B s : A .[i] = Some s -> (A ++ B).[i] = Some s.
Proof.
revert s B i. induction A; intros s B i H; destruct i; simpl; intuition; inv H.
Qed.
Lemma elAt_el A (s : X) m : A .[ m ] = Some s -> s el A.
Proof.
revert A. induction m; intros []; inversion 1; eauto.
Qed.
Lemma el_elAt (s : X) A : s el A -> exists m, A .[ m ] = Some s.
Proof.
intros H; destruct (el_pos H); eexists; eauto using pos_elAt.
Qed.
Lemma dupfree_elAt (A : list X) n m s : dupfree A -> A.[n] = Some s -> A.[m] = Some s -> n = m.
Proof with try tauto.
intros H; revert n m; induction A; simpl; intros n m H1 H2.
- destruct n; inv H1.
- destruct n, m; inv H...
+ inv H1. simpl in H2. eapply elAt_el in H2...
+ inv H2. simpl in H1. eapply elAt_el in H1...
+ inv H1. inv H2. rewrite IHA with n m...
Qed.
Lemma nth_error_none A n l : nth_error l n = @None A -> length l <= n.
Proof. revert n;
induction l; intros n.
- simpl; omega.
- simpl. intros. destruct n. inv H. inv H. assert (| l | <= n). eauto. omega.
Qed.
Lemma pos_None (x : X) l l' : pos x l = None-> pos x l' = None -> pos x (l ++ l') = None.
Proof.
revert x l'; induction l; simpl; intros; eauto.
have (x = a).
destruct (pos x l) eqn:E; try congruence.
rewrite IHl; eauto.
Qed.
Lemma pos_first_S (x : X) l l' i : pos x l = Some i -> pos x (l ++ l') = Some i.
Proof.
revert x i; induction l; intros; simpl in *.
- inv H.
- decide (x = a); eauto.
destruct (pos x l) eqn:E.
+ eapply IHl in E. now rewrite E.
+ inv H.
Qed.
Lemma pos_second_S x l l' i : pos x l = None ->
pos x l' = Some i ->
pos x (l ++ l') = Some ( i + |l| ).
Proof.
revert i l'; induction l; simpl; intros.
- rewrite plus_comm. eauto.
- destruct _; subst; try congruence.
destruct (pos x l) eqn:EE. congruence.
erewrite IHl; eauto.
Qed.
Lemma pos_length (e : X) n E : pos e E = Some n -> n < |E|.
Proof.
revert e n; induction E; simpl; intros.
- inv H.
- decide (e = a).
+ inv H. simpl. omega.
+ destruct (pos e E) eqn:EE.
* inv H. assert (n1 < |E|) by eauto. omega.
* inv H.
Qed.
Fixpoint replace (xs : list X) (y y' : X) :=
match xs with
| nil => nil
| x :: xs' => (if Dec (x = y) then y' else x) :: replace xs' y y'
end.
Lemma replace_same xs x : replace xs x x = xs.
Proof.
revert x; induction xs; intros; simpl; [ | destruct _; subst ]; congruence.
Qed.
Lemma replace_diff xs x y : x <> y -> ~ x el replace xs x y.
Proof.
revert x y; induction xs; intros; simpl; try destruct _; firstorder.
Qed.
Lemma replace_pos xs x y y' : x <> y -> x <> y' -> pos x xs = pos x (replace xs y y').
Proof.
induction xs; intros; simpl.
- reflexivity.
- repeat destruct Dec; try congruence; try omega; subst.
+ rewrite IHxs; eauto. + rewrite IHxs; eauto.
Qed.
End Fix_X.
Arguments replace {_} _ _ _.
(* Fixpoint getPosition {E: eqType} (A: list E) x := match A with *)
(* | nil => 0 *)
(* | cons x' A' => if Dec (x=x') then 0 else 1 + getPosition A' x end. *)
(* Lemma getPosition_correct {E: eqType} (x:E) A: if Dec (x el A) then forall z, (nth (getPosition A x) A z) = x else getPosition A x = |A |. *)
(* Proof. *)
(* induction A;cbn. *)
(* -dec;tauto. *)
(* -dec;intuition; congruence. *)
(* Qed. *)
Definition elAt := nth_error.
Notation "A '.[' i ']'" := (elAt A i) (no associativity, at level 50).
Section Fix_X.
Variable X : eqType.
Fixpoint pos (s : X) (A : list X) :=
match A with
| nil => None
| a :: A => if Dec (s = a) then Some 0 else match pos s A with None => None | Some n => Some (S n) end
end.
Lemma el_pos s A : s el A -> exists m, pos s A = Some m.
Proof.
revert s; induction A; simpl; intros s H.
- contradiction.
- decide (s = a) as [D | D]; eauto;
destruct H; try congruence.
destruct (IHA s H) as [n Hn]; eexists; now rewrite Hn.
Qed.
Lemma pos_elAt s A i : pos s A = Some i -> A .[i] = Some s.
Proof.
revert i s. induction A; intros i s.
- destruct i; inversion 1.
- simpl. decide (s = a).
+ inversion 1; subst; reflexivity.
+ destruct i; destruct (pos s A) eqn:B; inversion 1; subst; eauto.
Qed.
Lemma elAt_app (A : list X) i B s : A .[i] = Some s -> (A ++ B).[i] = Some s.
Proof.
revert s B i. induction A; intros s B i H; destruct i; simpl; intuition; inv H.
Qed.
Lemma elAt_el A (s : X) m : A .[ m ] = Some s -> s el A.
Proof.
revert A. induction m; intros []; inversion 1; eauto.
Qed.
Lemma el_elAt (s : X) A : s el A -> exists m, A .[ m ] = Some s.
Proof.
intros H; destruct (el_pos H); eexists; eauto using pos_elAt.
Qed.
Lemma dupfree_elAt (A : list X) n m s : dupfree A -> A.[n] = Some s -> A.[m] = Some s -> n = m.
Proof with try tauto.
intros H; revert n m; induction A; simpl; intros n m H1 H2.
- destruct n; inv H1.
- destruct n, m; inv H...
+ inv H1. simpl in H2. eapply elAt_el in H2...
+ inv H2. simpl in H1. eapply elAt_el in H1...
+ inv H1. inv H2. rewrite IHA with n m...
Qed.
Lemma nth_error_none A n l : nth_error l n = @None A -> length l <= n.
Proof. revert n;
induction l; intros n.
- simpl; omega.
- simpl. intros. destruct n. inv H. inv H. assert (| l | <= n). eauto. omega.
Qed.
Lemma pos_None (x : X) l l' : pos x l = None-> pos x l' = None -> pos x (l ++ l') = None.
Proof.
revert x l'; induction l; simpl; intros; eauto.
have (x = a).
destruct (pos x l) eqn:E; try congruence.
rewrite IHl; eauto.
Qed.
Lemma pos_first_S (x : X) l l' i : pos x l = Some i -> pos x (l ++ l') = Some i.
Proof.
revert x i; induction l; intros; simpl in *.
- inv H.
- decide (x = a); eauto.
destruct (pos x l) eqn:E.
+ eapply IHl in E. now rewrite E.
+ inv H.
Qed.
Lemma pos_second_S x l l' i : pos x l = None ->
pos x l' = Some i ->
pos x (l ++ l') = Some ( i + |l| ).
Proof.
revert i l'; induction l; simpl; intros.
- rewrite plus_comm. eauto.
- destruct _; subst; try congruence.
destruct (pos x l) eqn:EE. congruence.
erewrite IHl; eauto.
Qed.
Lemma pos_length (e : X) n E : pos e E = Some n -> n < |E|.
Proof.
revert e n; induction E; simpl; intros.
- inv H.
- decide (e = a).
+ inv H. simpl. omega.
+ destruct (pos e E) eqn:EE.
* inv H. assert (n1 < |E|) by eauto. omega.
* inv H.
Qed.
Fixpoint replace (xs : list X) (y y' : X) :=
match xs with
| nil => nil
| x :: xs' => (if Dec (x = y) then y' else x) :: replace xs' y y'
end.
Lemma replace_same xs x : replace xs x x = xs.
Proof.
revert x; induction xs; intros; simpl; [ | destruct _; subst ]; congruence.
Qed.
Lemma replace_diff xs x y : x <> y -> ~ x el replace xs x y.
Proof.
revert x y; induction xs; intros; simpl; try destruct _; firstorder.
Qed.
Lemma replace_pos xs x y y' : x <> y -> x <> y' -> pos x xs = pos x (replace xs y y').
Proof.
induction xs; intros; simpl.
- reflexivity.
- repeat destruct Dec; try congruence; try omega; subst.
+ rewrite IHxs; eauto. + rewrite IHxs; eauto.
Qed.
End Fix_X.
Arguments replace {_} _ _ _.
(* Fixpoint getPosition {E: eqType} (A: list E) x := match A with *)
(* | nil => 0 *)
(* | cons x' A' => if Dec (x=x') then 0 else 1 + getPosition A' x end. *)
(* Lemma getPosition_correct {E: eqType} (x:E) A: if Dec (x el A) then forall z, (nth (getPosition A x) A z) = x else getPosition A x = |A |. *)
(* Proof. *)
(* induction A;cbn. *)
(* -dec;tauto. *)
(* -dec;intuition; congruence. *)
(* Qed. *)