Require Export BaseLists Filter.
(**** Element removal *)
Section Removal.
Variable X : eqType.
Implicit Types (x y: X) (A B: list X).
Definition rem A x : list X :=
filter (fun z => Dec (z <> x)) A.
Lemma in_rem_iff x A y :
x el rem A y <-> x el A /\ x <> y.
Proof.
unfold rem. rewrite in_filter_iff, Dec_reflect. tauto.
Qed.
Lemma rem_not_in x y A :
x = y \/ ~ x el A -> ~ x el rem A y.
Proof.
unfold rem. rewrite in_filter_iff, Dec_reflect. tauto.
Qed.
Lemma rem_incl A x :
rem A x <<= A.
Proof.
apply filter_incl.
Qed.
Lemma rem_mono A B x :
A <<= B -> rem A x <<= rem B x.
Proof.
apply filter_mono.
Qed.
Lemma rem_cons A B x :
A <<= B -> rem (x::A) x <<= B.
Proof.
intros E y F. apply E. apply in_rem_iff in F.
destruct F as [[|]]; congruence.
Qed.
Lemma rem_cons' A B x y :
x el B -> rem A y <<= B -> rem (x::A) y <<= B.
Proof.
intros E F u G.
apply in_rem_iff in G as [[[]|G] H]. exact E.
apply F. apply in_rem_iff. auto.
Qed.
Lemma rem_in x y A :
x el rem A y -> x el A.
Proof.
apply rem_incl.
Qed.
Lemma rem_neq x y A :
x <> y -> x el A -> x el rem A y.
Proof.
intros E F. apply in_rem_iff. auto.
Qed.
Lemma rem_app x A B :
x el A -> B <<= A ++ rem B x.
Proof.
intros E y F. decide (x=y) as [[]|]; auto using rem_neq.
Qed.
Lemma rem_app' x A B C :
rem A x <<= C -> rem B x <<= C -> rem (A ++ B) x <<= C.
Proof.
unfold rem; rewrite filter_app; auto.
Qed.
Lemma rem_equi x A :
x::A === x::rem A x.
Proof.
split; intros y;
intros [[]|E]; decide (x=y) as [[]|D];
eauto using rem_in, rem_neq.
Qed.
Lemma rem_comm A x y :
rem (rem A x) y = rem (rem A y) x.
Proof.
apply filter_comm.
Qed.
Lemma rem_fst x A :
rem (x::A) x = rem A x.
Proof.
unfold rem. rewrite filter_fst'; auto.
Qed.
Lemma rem_fst' x y A :
x <> y -> rem (x::A) y = x::rem A y.
Proof.
intros E. unfold rem. rewrite filter_fst; auto.
Qed.
Lemma rem_id x A :
~ x el A -> rem A x = A.
Proof.
intros D. apply filter_id. intros y E.
apply Dec_reflect. congruence.
Qed.
Lemma rem_reorder x A :
x el A -> A === x :: rem A x.
Proof.
intros D. rewrite <- rem_equi. apply equi_push, D.
Qed.
Lemma rem_inclr A B x :
A <<= B -> ~ x el A -> A <<= rem B x.
Proof.
intros D E y F. apply in_rem_iff.
intuition; subst; auto.
Qed.
End Removal.
Hint Resolve rem_not_in rem_incl rem_mono rem_cons rem_cons' rem_app rem_app' rem_in rem_neq rem_inclr.
(**** Element removal *)
Section Removal.
Variable X : eqType.
Implicit Types (x y: X) (A B: list X).
Definition rem A x : list X :=
filter (fun z => Dec (z <> x)) A.
Lemma in_rem_iff x A y :
x el rem A y <-> x el A /\ x <> y.
Proof.
unfold rem. rewrite in_filter_iff, Dec_reflect. tauto.
Qed.
Lemma rem_not_in x y A :
x = y \/ ~ x el A -> ~ x el rem A y.
Proof.
unfold rem. rewrite in_filter_iff, Dec_reflect. tauto.
Qed.
Lemma rem_incl A x :
rem A x <<= A.
Proof.
apply filter_incl.
Qed.
Lemma rem_mono A B x :
A <<= B -> rem A x <<= rem B x.
Proof.
apply filter_mono.
Qed.
Lemma rem_cons A B x :
A <<= B -> rem (x::A) x <<= B.
Proof.
intros E y F. apply E. apply in_rem_iff in F.
destruct F as [[|]]; congruence.
Qed.
Lemma rem_cons' A B x y :
x el B -> rem A y <<= B -> rem (x::A) y <<= B.
Proof.
intros E F u G.
apply in_rem_iff in G as [[[]|G] H]. exact E.
apply F. apply in_rem_iff. auto.
Qed.
Lemma rem_in x y A :
x el rem A y -> x el A.
Proof.
apply rem_incl.
Qed.
Lemma rem_neq x y A :
x <> y -> x el A -> x el rem A y.
Proof.
intros E F. apply in_rem_iff. auto.
Qed.
Lemma rem_app x A B :
x el A -> B <<= A ++ rem B x.
Proof.
intros E y F. decide (x=y) as [[]|]; auto using rem_neq.
Qed.
Lemma rem_app' x A B C :
rem A x <<= C -> rem B x <<= C -> rem (A ++ B) x <<= C.
Proof.
unfold rem; rewrite filter_app; auto.
Qed.
Lemma rem_equi x A :
x::A === x::rem A x.
Proof.
split; intros y;
intros [[]|E]; decide (x=y) as [[]|D];
eauto using rem_in, rem_neq.
Qed.
Lemma rem_comm A x y :
rem (rem A x) y = rem (rem A y) x.
Proof.
apply filter_comm.
Qed.
Lemma rem_fst x A :
rem (x::A) x = rem A x.
Proof.
unfold rem. rewrite filter_fst'; auto.
Qed.
Lemma rem_fst' x y A :
x <> y -> rem (x::A) y = x::rem A y.
Proof.
intros E. unfold rem. rewrite filter_fst; auto.
Qed.
Lemma rem_id x A :
~ x el A -> rem A x = A.
Proof.
intros D. apply filter_id. intros y E.
apply Dec_reflect. congruence.
Qed.
Lemma rem_reorder x A :
x el A -> A === x :: rem A x.
Proof.
intros D. rewrite <- rem_equi. apply equi_push, D.
Qed.
Lemma rem_inclr A B x :
A <<= B -> ~ x el A -> A <<= rem B x.
Proof.
intros D E y F. apply in_rem_iff.
intuition; subst; auto.
Qed.
End Removal.
Hint Resolve rem_not_in rem_incl rem_mono rem_cons rem_cons' rem_app rem_app' rem_in rem_neq rem_inclr.